Как стать автором
Поиск
Написать публикацию
Обновить

Так ли точна математика, как кажется?

Время на прочтение6 мин
Количество просмотров24K
Наверное, данный вопрос задавал себе каждый, чуточку интересующийся математикой человек. Прочитав статью 2 х 2 = 4, было сделано заключение, что эта тема также может понравиться хабралюдям. Речь пойдет об аксиомах в математике, противоречиях и парадоксах. Кому интересно — добро пожаловать под кат.

Вместо предисловия


Каждый из нас в школе не сомневался в справедливости тех или иных математических утверждений. Ну и правда, что учитель сказал, то и истина. Но, познакомившись со строгой математикой (не люблю слово «высшей»), мы начали понимать, что чем больше мы стараемся формализовать предмет, тем сложнее это сделать, а иногда совсем не получается.

Так нам привычные действительные числа, для Леопольда Кронекера не являлись таковыми, он говорил: «Бог создал натуральные числа, а всё прочее — дело рук человеческих» («Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk»)

После того, как Георг Кантор доказал, что отрезок равномощен (А и B равномощны, если существует биекция между ними) n-мерному пространству, он провозгласил: «Я вижу это, но я не верю в это!» («Je le vois, mais je ne le crois pas!»)

Немного философии


Речь в этой статье пойдет об аксиоматике тех или иных математических множеств, операций и т.д., но все же закономерным вопросом будет, а зачем нам аксиомы вообще нужны? Приведу простой пример. Возьмем русский язык и слово, например, «дежавю». Посмотрим его значение, «Дежавю́ — психическое состояние, при котором человек ощущает, что он когда-то уже был в подобной ситуации». Но мы дотошные, посему теперь вместо одного слова перед нами возникнет куда больше. Что такое «психический», «состояние», «человек», «ощущать», «подобный», «ситуация». Как вы можете заметить, у нас получается дерево слов, а в силу того, что слов, имеющих значение в русском языке конечное множество, у нас получится путь в дереве, в котором встречается дважды одно и то же слово, т.е. мы определили его через самого себя.

Вот для этого и нужны аксиомы. Нам всегда нужен фундамент, с которого мы можем стартовать, что-то, что и так всем интуитивно понятно. Неточность 1. В математике часто бывают утверждения, интуитивно понятные, но приводящие к парадоксам. Например аксиома выбора(Axiom of Choice), но об этом мы поговорим чуть позже.

Больше конкретики. Аксиомы Пеано натуральных чисел.


Я, как программист, люблю считать, что 0 принадлежит натуральным числам, это удобно. Что-ж, теперь наиболее знаменитая аксиоматика Пеано.

1. 0 является натуральным числом.
2. Число, следующее за натуральным, тоже является натуральным.
3. 0 не следует ни за каким натуральным числом.
4. Если натуральное число a непосредственно следует как за числом b, так и за числом c, то b и c совпадают.
5. (Аксиома индукции) Если какое-либо предложение доказано для 0 (база индукции) и если из допущения, что оно верно для натурального числа n, вытекает, что оно верно для следующего за n натурального числа (индукционное предположение), то это предложение верно для всех натуральных чисел.

Разберемся по-порядочку.
1-я аксиома говорит, что существует хотя бы одно натуральное число. Иначе бы мы сказали, что это вообще пустое множество и все аксиомы бы для него выполнялись бы.
2 и 3 вроде бы и так ясны.
4. Эта аксиома нужна для того, чтобы не появились «ответвления». Иначе мы могли бы сказать, что 3 следует за 2 и 2', а дальше 2 и 2' за 1 и 1' соответственно, и т.д. В принципе, такая модель имеет право на существование, но на ней крайне сложно ввести отношение порядка.
5. Первый человек в очереди женщина. За каждой женщиной идет женщина. В реальной жизни это значит, что вся очередь состоит из женщин. А так как мы хотим описывать все же более жизненные объекты, то и вводим аксиому индукции, ибо из предыдущих она никак не следует.

Удобная модель, все отлично, все счастливы. Вопрос, в чем же подвох? Оказывается, что если мы добавим новое натуральное число с к нашим привычным натуральным числам и скажем, что оно больше всех наших привычных, то мы не придем ни к какому противоречию. Т.е. у нас есть не только наша модель N, но и, к примеру, N + Z. Где в N и Z (целые числа) обычное сравнение чисел, а также любое число из N меньше любого числа из Z.

Вопрос, можно ли ввести аксиомы так, чтобы мы описали наши привычные натуральные числа, и только их (т.е. существует ли формула, подставив в которую естественное натуральное число она выдаст True, а любое другое число False)? Ответ — нет. Идея доказательства в том, что все формулы можно закодировать натуральными числами. А далее, написав хитрую формулу, и подставив ее код в Ф (формула, которая по предположению умеет определять естественную натуральность), мы получим противоречие.

Больше конкретики. Аксиоматика множеств Цермело-Френкеля (ZF)


На ниже приведенных аксиомах и строится современная математика, что-ж, глубокий вдох… приступим. Для начала оговорюсь, что мы будем рассматривать всевозможные множества. Например, множество всех домов в России, в то же время, каждый элемент множества, в данном случае дом, может содеражать еще какие-то множества, вполне может быть, что они оказались неоднородными, например количество роутеров в доме (ед. измерения — число) и люди (ед. измерения — человек), проживающие в этом доме. Более естественный пример для программистов — вложенные списки [ [1, 2, [3, -19] ], [0, 1], [5, [26, 1] ], 27]. В данном примере у нас есть множество, состоящее из 4-х элементов [1, 2, [3, -19] ], [0, 1], [5, [26, 1] ], 27. Для ясного осознания заметим, что 0 не является элементом этого множества, хотя, если копнуть в глубину, то окажется, что 0 там есть! Теперь перейдем к аксиомам. Я позволю себе не давать нудные формулировки, а объяснять своими словами.

1. Аксиома объемности. Если два множества состоят из одинаковых элементов, то они равны.
2. Аксиома подмножеств. Если у нас есть некоторая формула, то из любого множества она «вырезает» также множество.
3. Аксиома замены. Если для каждого мн-ва х, F(x) = {y | Ф(х, у)} также является множеством, то для любого а, {y | x принадлежит а, у принадлежит F(x)} — также множество.
4. Аксиома степени. Множество подмножеств также является множеством.
5. Аксиома бесконечности. Существует множество, которое содержит пустое множество, а также вместе с каждым элементом x содержит множество {{x}, x} — т.е. все элементы x и сам x как элемент.
6. Аксиома регулярности. Не существует бесконечных по включению цепочек множеств, т.е. нельзя, чтобы множество a1 сожержало a2, то в свою очередь a3, и т.д.

Пояснения.
1. Все ясно.
2. Пусть мы рассматриваем множество натуральных чисел. А формула такая: х != 0. Понятно, что ей удовлетворяют все натуральные числа кроме нуля. Аксиома говорит, что натуральные числа без нуля — также множество. Если постараться обощить эту теорему, то получится парадокс Рассела.
3. Не знал как проще описать эту аксиому, в двух словах, если мы будем объединять множества, то получится множество.
4. [1, 2, 3], множество подмножеств данного множества (прошу прощения за большую удельную плотность слова «множество») — 1, 2, 3, [1, 2], [1, 3], [2, 3], [1, 2, 3]. Вопрос, а когда может получиться, что мы что-то сделаем и у нас окажется не множество? Ну вот хотя бы рассмотрим множество всех множеств! По аксиоме 4 существует множество его подмножеств, а нетрудно доказать, что оно по мощности больше нашего мн-ва.
5. Первая аксиома, где просится существование хоть какого-то множества. Какого именно — описано в аксиоме.
6. Тоже все ясно.

Что-ж, покончили с нудятиной. С помощью этих аксиом можно построить натуральные числа, к примеру. Они будут выглядеть так (e — пустое множество). 0 = е, 1 = {e}, 2 = {e, {e}}, 3 = {e, {e}, {e, {e}} }, и т.д. Собственно говоря, на данной теории и построена современная математика.

Противоречия и парадоксы


Во-первых, не доказано, что аксиомы ZF непротиворечивы, если же они противоречивы, то можно вывести любое утверждение, например 0 = 1, и грош цена нашей науке. Даже более, доказано, что нельзя доказать непротиворечивость ZF. Забавная штука получается, но в этом нет ничего страшного. Если мы чего-то не можем доказать, не значит, что этого нет, в данном случае непротиворечивости. Движемся дальше.

Математика получается достаточно скупой наукой, то есть мало всего можно доказать, если не добавить аксиому выбора. А что это за аксиома такая? В трех словах — из любого непустого множества можно выбрать элемент. Казалось бы, очень естественная аксиома, но она приводит к парадоксу Банаха-Тарского, заключающегося в том, что шар можно разбить на 5 кусков и собрать из них 2 таких же шара. Т.е. яблоко можно разрезать на 5 частей и собрать два яблока?! Посему и парадокс. Что еще интереснее, доказано, что если теория ZF непротиворечива, то добавив к ней аксиому выбора (ZF + Axiom of Choice = ZFC) мы получим непротиворечивую аксиоматику!

Искорка надежды


То мы что-то не можем доказать, то какие-то парадоксы. Может, математика — полная чушь? Может не следует ее изучать? Ответ: никакая не чушь, изучать следует. Почему же, спросит читатель. Я приведу достаточно физическое доказательство. Обычно в физике бывает так. «Ого, в течении 100 лет мы наблюдали за падением бутербродов и оказалось, что они падают маслом вниз, назовем это законом». Думаете, шучу? А попытайтесь доказать, что тела состоят из молекул. Ничего более строгого, чем то, что в течение 2000 лет эта теория не давала сбой, вы не придумаете. Так вот с математикой примерно та же ситуация. Мы используем ее, вроде бы машины едут, самолеты летят, здания стоят и все хорошо. Интуитивно ясно, что если бы в математике было противоречие, то, чем глубже бы мы копались в дебрях этой науки, тем легче бы были доказательства теорем, но такого не происходит.

И все же, откуда парадокс Банаха-Тарского возникает, все же достаточно логично! На самом деле, если аккуратно заметить, то во Вселенной нет ничего бесконечного. Нет ничего бесконечно малого и т.д. Просто удобно работать с бесконечными множествами. Так что вполне нормально, что могут получаться результаты не применимые к жизни.

Всем удачи в изучении данного предмета! =)
Теги:
Хабы:
Всего голосов 7: ↑5 и ↓2+3
Комментарии20

Публикации

Ближайшие события