Библиотека для гомоморфного шифрования HELib

    Компания IBM выпустила свободную криптографическую библиотеку HElib с поддержкой гомоморфного шифрования (homomorphic encryption, HE). Это первая в истории реализация подобной криптосистемы и важный этап в развитии криптографии как науки и математических методов защиты информации. Разработка имеет особенную практическую ценность именно в наши дни, с распространением облачных сервисов.

    Гомоморфное шифрование — это криптографическая система, которая позволяет проводить математические операции над зашифрованными данными без их предварительной расшифровки. Идея была сформирована 30 лет назад знаменитым криптографом Рональдом Ривестом, но в течение длительного периода времени существование полностью гомоморфных систем было не доказано. Сам Ривест решил, что идея не подлежит реализации.

    Тем не менее, исследователи IBM сумели реализовать не частично, а полностью гомоморфное шифрование. Схема получила название BGV (Бракерски-Гентри-Вайкунтанатан, Brakerski-Gentry-Vaikuntanathan).

    Аспирант Стэнфорда Крейг Гентри (Craig Gentry) предложил эту модель в 2009 году для своей кандидатской диссертации «Полностью гомоморфное шифрование с использованием идеальных решёток» (Fully homomorphic encryption using ideal lattices). Модель была очень благосклонно принята сообществом криптографов, которые сразу реализовали для неё ряд усовершенствований. Сам Гентри ещё до этого получил поддержку от Национального научного общества и научно-исследовательского подразделения IBM Research.

    В библиотеке HElib схема BGV реализована с оптимизациями для быстродействия, в том числе с использованием техники упаковки шифротекста Смарта-Веркаутерена и оптимизациями Гентри-Халеви-Смарта.

    HElib написана на C++ с использованием математической библиотеки NTL. Исходный код распространяется под лицензией GPL.

    К сожалению, гомоморфное шифрование значительно увеличивает требования к вычислительным ресурсам компьютера. По оценке самого Гентри в 2009 году, например, обработка поискового запроса в Google в случае, если текст зашифрован, потребует примерно в триллион раз больше вычислений. Тем не менее, сделанные оптимизации позволили существенно повысить производительность библиотеки, так что через несколько лет или десятилетий, если закон Мура продолжит действовать, библиотека может найти широкое применение в веб-приложениях. Возможно, даже раньше, чем мы думаем.
    • +46
    • 11,5k
    • 9

    IBM

    121,00

    Компания

    Поделиться публикацией
    Комментарии 9
      +2
      Требую описание BGV для студентов в студию.
        0
        Поддерживаю! А то не понятен размах.
        +1
        eprint.iacr.org/2012/240.pdf

        BGV это по фамилиям авторов: Brakerski, Gentry and Vaikuntanathan
          +1
          вот эта ссылка из описания библиотеки:
          eprint.iacr.org/2011/277
            0
            В статье указано как расшифровывается название алгоритма. Под описанием подразумевается изложение алгоритма «простым» языком, который был бы понятен студентам соответствующей специальности.

            P.S. Если получиться описать алгоритм так, чтобы было понятно любому человеку (без специфического образование) было бы вообще здорово.
              0
              Опс, теперь вижу.

              Еще бы «простым» языком объяснили бы, что это и зачем оно нужно
                0
                Что «это» вы имеете в виду? Алгоритм? Так в статье же написано, что он позволяет шифровать так, что шифрованные данные можно обрабатывать без расшифровки.
          0
          Хых. Поисковый запрос в Google, скорее всего, требует гораздо более сложную схему, чем log от длины запроса. Или я чего-то не понимаю?

          Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

          Самое читаемое