Comments 38
Где можно скачать эти картинки в хорошем качестве? Хочу распечатать и повесить теперь :)
По ссылке Ещё картины
Хочу распечатать
Для начала надо будет спросить разрешения у автора.
Зачем спрашивать у автора, если я хочу распечатку у себя дома повесить?
Разве исходники автора не в открытом доступе?
Вспоминая исход тяжбы про обезъянное селфи, автором этих картин вполне могут признать саму нейросеть.
Хотя в этом случае нейросеть сама себя, слава скотчу, не запускала.
Хотя в этом случае нейросеть сама себя, слава скотчу, не запускала.
Я правильно понимаю, что эти картинки — лишь своеобразные коллажи? Т.е. что нейронная сеть компонует результат, используя фрагменты готовых изображений из библиотеки?
Если нет, откуда возникают довольно детальные изображения животных на картинках, скажем, с облаками? То, что сеть обучали на таких картинках — этого не объясняет. В статье этот момент как-то пропущен.
Если нет, откуда возникают довольно детальные изображения животных на картинках, скажем, с облаками? То, что сеть обучали на таких картинках — этого не объясняет. В статье этот момент как-то пропущен.
Глубокие нейронные сети обучаются с прицелом на выделение ключевых особенностей в исходных данных. Для изображений эти особенности, если говорить грубо, могут представлять собой какие то характерные участи как то глаза, силуэт\контур, фон, в общем, все, что может помочь решить задачу. Когда нейронная сеть сталкивается с новым изображением, она пытается собрать из выделенных ранее особенностей «правильный» ответ. Отсюда мы и наблюдаем фрагменты собак на картинках, где их нет.
> собрать из выделенных ранее особенностей «правильный» ответ.
Непонятно, где и как эти собранные ранее особенности хранятся. Т.е., допустим, сеть обучена распознавать кошачью морду и распознаёт её, ок. Но каким образом из неё можно извлечь эти черты кошачьей морды в виде конкретного изображения?
Непонятно, где и как эти собранные ранее особенности хранятся. Т.е., допустим, сеть обучена распознавать кошачью морду и распознаёт её, ок. Но каким образом из неё можно извлечь эти черты кошачьей морды в виде конкретного изображения?
Обычно изменяют случайное или заданное изображение методом градиентного спуска так, чтобы усилить сигнал выбранных нейронов сети.
Структура современных сверточных нейронных сетей склоняет сети запоминать кусочки образа, игнорируя расстояние между ними, до тех пор пока они достаточно близко друг к другу. В итоге, упрощенно говоря, при попытках восстановить «кошачью морду», сеть рисует два глаза, нос, усы и т.п. А вот в каком порядке и на каком расстоянии друг от друга она их расположит, ее не волнует.
Структура современных сверточных нейронных сетей склоняет сети запоминать кусочки образа, игнорируя расстояние между ними, до тех пор пока они достаточно близко друг к другу. В итоге, упрощенно говоря, при попытках восстановить «кошачью морду», сеть рисует два глаза, нос, усы и т.п. А вот в каком порядке и на каком расстоянии друг от друга она их расположит, ее не волнует.
> Но каким образом из неё можно извлечь эти черты кошачьей морды в виде конкретного изображения?
Если коротко, то оптимизируем входной сигнал, максимизируя L2-норму выходов нейронов зафиксированного слоя обычным градиентным методом. На самом деле ещё с парой трюков: github.com/google/deepdream/blob/master/dream.ipynb
Если коротко, то оптимизируем входной сигнал, максимизируя L2-норму выходов нейронов зафиксированного слоя обычным градиентным методом. На самом деле ещё с парой трюков: github.com/google/deepdream/blob/master/dream.ipynb
>Как нейронные сети рисуют картины
и тут же:
>Хороший способ проверить, действительно ли сеть научилась распознавать образ — это попросить её нарисовать его.
Так где ответ на вопрос в заголовке?
Топик в стиле «как нарисовать сову»
и тут же:
>Хороший способ проверить, действительно ли сеть научилась распознавать образ — это попросить её нарисовать его.
Так где ответ на вопрос в заголовке?
Топик в стиле «как нарисовать сову»
Так и осталось нераскрытым — как нейросеть рисует.
Одно дело классифицировать. «Этот пиксел — от собаки, этот пиксел — от пагоды». И другое — по классификации восстановить прообраз. Вот этот момент непонятен.
Одно дело классифицировать. «Этот пиксел — от собаки, этот пиксел — от пагоды». И другое — по классификации восстановить прообраз. Вот этот момент непонятен.
У меня вот что получилось из шума

И треугольник на шуме

Ну и для тех кто хочет сам поковыряться
Оригинальная статья:
http://googleresearch.blogspot.jp/2015/07/deepdream-code-example-for-visualizing.html
Докер контейнер:
https://registry.hub.docker.com/u/mjibson/deepdream/
Оригинальная статья:
http://googleresearch.blogspot.jp/2015/07/deepdream-code-example-for-visualizing.html
Докер контейнер:
https://registry.hub.docker.com/u/mjibson/deepdream/
И для тех, кто хочет просто посмотреть побольше картинок: deepdream.pictures
Скажите, а есть возможность заменить психособак на свои картинки, есть одна задумка клевая.
Насколько я понимаю, рисование основано на механизме обратного распространения. То есть, некоторое изображение на входе дает сигнал на выходе: нейрон1 = 0.8, нейрон2 = 0.3,… Задаем сигнал на выходе, по коэффициентам нейронов рассчитываем, какой должна быть входная картинка.
Только вот мне кажется, это сильно далеко от того, как распознает изображения человек, собака или даже лягушка.
Только вот мне кажется, это сильно далеко от того, как распознает изображения человек, собака или даже лягушка.
Интересно. Компьютеры научились рисовать как люди-шизофреники. Например, картины художника Уэйна Луиса Уильяма, к концу жизни сошедшего с ума:
Путь верен. «Здоровые» шедевры не за горами.
Картины

Серия из шести работ Уэйна часто используется как пример в учебниках по психиатрии для иллюстрации изменения стиля творчества в результате развития психической болезни с течением времени.
Путь верен. «Здоровые» шедевры не за горами.
Все шесть картин — это рисунок одного и того же котика?
Скорее всего, нет. На них просто хорошо видно как человеческие картины изменяются под действием психологической болезни.
Кстати, интересны методы лечения шизофрении:
Оба подхода направлены на переобучение нейронов мозга. В первом случаи прямым вмешательством в работу нейронов, во втором — методом обратного распространении ошибки. Кто знает — может когда-нибудь методы лечения шизофрении буду использовать для нейронных сетей?
Кстати, интересны методы лечения шизофрении:
Медикаментозное лечение
Все антипсихотики блокируют рецепторы дофамина типа D2, степень блокировки ими других значимых нейромедиаторных рецепторов варьирует. Типичные антипсихотики в основном подавляют только рецепторы D2, а атипичные воздействуют одновременно на целый ряд нейромедиаторных рецепторов: дофамина, серотонина, гистамина и других.
Психотерапевтическое лечение
Ещё один подход — когнитивная тренировка (англ. cognitive remediation therapy), приёмы которой направлены на борьбу с когнитивными нарушениями, иногда присутствующими при шизофрении. Первые результаты говорят о когнитивной эффективности этого направления, основанного на методиках нейропсихологической реабилитации, причём некоторые позитивные подвижки сопровождаются изменениями характера активации мозга, отмечаемыми при фМРТ-сканировании. Аналогичный подход под названием «терапия когнитивного улучшения», направленный, помимо нейрокогнитивной сферы, на социальное познание, также показал эффективность.
Оба подхода направлены на переобучение нейронов мозга. В первом случаи прямым вмешательством в работу нейронов, во втором — методом обратного распространении ошибки. Кто знает — может когда-нибудь методы лечения шизофрении буду использовать для нейронных сетей?
Сколько картинок видел, даже с порнухой, какая то хрень это а не рисунки. Не видно ни какой связи с творчеством а только наложение одного на другое.
Хочется еще послушать музыку, написанную нейросетью
Собака эта несчастная… Она теперь везде чудиться будет…
Когда смотришь в сумерках на человека, пытаясь разглядить закрыты у него глаза или нет, мозг так же дорисовывает то, что не может различить в темноте глаз. То глаза кажуться закрытыми, то через секунда — распахнутыми и смотрящими на тебя в упор.
Sign up to leave a comment.
Как нейронные сети рисуют картины