Теперь ИИ классифицирует рак лёгких не хуже специалистов по лабораторной диагностике

Original author: Jason Wei
  • Translation

На пути к здравоохранению с ИИ-поддержкой



Глубинное обучение определяет рак не хуже специалистов по лабораторной диагностике


На Западе рак легких — самый смертоносный вид рака. Специалисты по лабораторной диагностике рассматривают образцы тканей под микроскопом и классифицируют их, чтобы определить стадию развития опухоли и назначить лечение. В каждом случае рак по-своему уникален, поэтому интерпретация препарата может оказаться трудной задачей. Крайне трудной. Может ли искусственный интеллект прийти на помощь?
Да, да, и…



Мой братан Джон Ватсон из «Шерлока» от BBC


Глубинное обучение


Недавно среди технологий глубинного обучения появился метод анализа изображений, привнесший серьезные изменения в область компьютерного зрения. Он автоматически выявляет уникальные особенности изображения и называется свёрточная нейронная сеть (СНС). Для автоматического распознавания уникальных образов в изображениях сети используют подход с использованием обработки данных и выполняют эту работу лучше человека, если брать за эталон базы данных ImageNet и CIFAR-10, промаркированные вручную. Если использовать большое количестве виртуальных изображений препаратов с комментариями специалистов, СНС можно научить классифицировать различные виды рака лёгких по снимкам, и таким образом облегчить процесс обнаружения и классификации аденокарциномы лёгкого.



Скользящее окно модели для классификации виртуальных изображений препаратов легкого


Создавая ИИ


Учёные из Hassanpour Lab в Медицинской школе имени Гейзеля в Дартмуте опубликовали в Nature Scientific Reports научную статью, в который рассказали о нейронной сети, способной классифицировать гистологические подтипы рака лёгких: стелющийся, ацинарный, папиллярный, микропапиллярный и солидный. Модель обучили на более чем 4 000 прокомментированных виртуальных слайдах и точно настроили, используя набор классических образцов для каждого характерного типа. Обученная модель хорошо показала себя на этих классических образцах: с площадью под кривой операционной характеристики больше или равно 0,97 для всех категорий.



Показатель работы ИИ в определении классических образцов рака легких


ИИ vs специалисты?


Чтобы сравнить работу этого ИИ и специалистов по лабораторной диагностике, учёные измерили их показатели в независимом тестирование. Модель на основе глубинного обучения и три практикующих врача классифицировали 143 полных виртуальных изображения препаратов с реальными случаями. Согласно коэффициенту Каппа и двум показателям согласия, обученная ими модель обошла врачей-диагностов по всем параметрам, как показано в данной таблице из доклада:



Таблица 2: Сравнение специалистов и нашей модели в классификации преобладающих подтипов в 143 полных виртуальных изображениях препаратов. Хорошее согласие (R. Agreement) обозначает согласие комментатора как минимум с двумя из трех других. 95% интервалов доверия представлены в скобках.


Чтобы провести сравнение, обнаруженные моделью характерные типы были наглядно представлены слайд за слайдом вместе с прокомментированным специалистами для ряда выбранных изображений. Совпадения весьма точные:



Визуализация гистологической картины, прокомментированной специалистами ((A.i-iv) в сравнении с теми, что определила модель глубинного обучения (B.i-iv).


Что это значит?


Глубинное обучение стало чрезвычайно мощным методом, который способен работать наравне с человеком даже при решении таких сложных задач, как анализ медицинских изображений. Классификатор рака легких на основе алгоритмов глубинного обучения мог бы разделять пациентов на группы и выделять приоритетные для врачебного анализа случаи. Он мог бы также служить в качестве второго мнения в случаях с непонятными изображениями. Хотя эти методы в перспективе могут автоматизировать трудоемкую часть работы специалиста, еще многое предстоит сделать, прежде чем их можно будет использовать на практике. Эту модель необходимо проверить на многих базах данных от разных организаций. Ее пригодность должна быть подтверждена клиническими испытаниями. Есть ли вероятность, что автоматическая система заменит специалистов по лабораторной диагностике? Возможно, однажды, но не в скором времени. Все системы ИИ должны быть всесторонне проверены в клинических условиях, прежде чем врачи, пациенты и медицинское сообщество сможет им доверять.


Создание алгоритмов ИИ для здравоохранения — это как взбираться на высокую гору. Мы можем быть на полдороги, но впереди еще длинный путь, и проще не становится.


Код для классификации скана с гистопатологией лёгкого находится в открытом доступе на Github.

Share post
AdBlock has stolen the banner, but banners are not teeth — they will be back

More
Ads

Comments 8

    0
    Класс. Еще б научились классифицировать какой ген отвечает за старение впринципе — с такой сферой и не греж было б жизнь связать.
      0
      Код для классификации скана с гистопатологией лёгкого находится в открытом доступе на Github.
      Нужен не код, а рабочая обученная система вместе со своими знаниями. Где и как можно воспользоваться рабочей системой? Видимо, нигде и никак.
        0
        Отличная новость! Столько сколько я курю то мне очень скоро пригодится!
          0
          Не только не хуже, но и лучше. По доброй половине специалистов в медицине тихонько плачет Watson.
            +1
            На GitHubе полно проектов, использующих свёрточные сети для патоморфологической диагностики. И уже года два как они на пару процентов точнее живых морфологов. Очень нужны датасеты, а их трудно добыть — дофига отсмотренных слайдов, дофига неотсмотренных слайдов, но достать надолго автомат типа Aperto, чтобы их отснять — нереально. Если какой-нибудь успешный частный центр с большим объёмом онкологии этим займётся, то через год морфологи будут не нужны.
              0
              Согласно коэффициенту Каппа и двум показателям согласия, обученная ими модель обошла врачей-диагностов по всем параметрам


              И это при условии что наверняка взяли далеко не средних врачей и они, зная что это тест, наверняка напрягались больше обычного.
                0
                Передайте им, пусть расслабятся. Если и внедрят ИИ в медицине, то только в качестве консультирующего голоса, решение выносить (и расписываться за него) будет только врач и спрашивать будут с врача.
                А вот если ИИ будет нормально подсказывать врачу и позволит спасти несколько процентов жизней — это уже прекрасно.
                  0
                  Речь не о том, что эти врачи боялись потерять работу. Речь о том, что это в любом случае была нестандартная ситуация и они были более внимательны чем обычно.

                  То естъ даже если бы в этом конкретном тесте ИИ оказался не лучше врачей, то это бы не означало что он не лучше среднего врача.

              Only users with full accounts can post comments. Log in, please.