Pull to refresh

Многомерные кубы, OLAP и MDX

SQL
OLAP Довольно давно являюсь обитателем Хабра, но так и не доводилось читать статьи на тему многомерных кубов, OLAP и MDX, хотя тема очень интересная и с каждым днем становится все более актуальной.
Не секрет, что за тот небольшой промежуток времени развития баз данных, электронного учета и онлайн систем, самих данных накопилось очень много. Теперь же интерес также представляет полноценный анализ архивов, а возможно и попытка прогнозирования ситуаций для подобных моделей в будущем.
С другой стороны, большие компании даже за несколько лет, месяцев или даже недель могут накапливать настолько большие массивы данных, что даже их элементарный анализ требует неординарных подходов и жестких аппаратных требований. Такими могут быть системы обработки банковских транзакций, биржевые агенты, телефонные операторы и т.д.
Думаю, всем хорошо известны 2 разных подхода построения дизайна баз данных: OLTP и OLAP. Первый подход (Online Transaction Processing — обработка транзакций в реальном времени) рассчитан на эффективный сбор данных в реальном времени, второй же (Online Analytical Processing – аналитическая обработка в реальном времени) нацелен именно на выборку и обработку данных максимально эффективным способом.

Давайте рассмотрим основные возможности современных OLAP кубов, и какие задачи они решают (за основу взяты Analysis Services 2005/2008):
  • быстрый доступ к данным
  • преагрегация
  • иерархии
  • работа с временем
  • язык доступа к многомерным данным
  • KPI (Key Performance Indicators)
  • дата майнинг
  • многоуровневое кэширование
  • поддержка мультиязычности

Итак, рассмотрим возможности OLAP кубов немного подробнее.

Немного подробнее о возможностях


Быстрый доступ к данным
Собственно быстрый доступ к данным, независимо от размеров массива, и является основой OLAP систем. Так как основной упор именно на этом, хранилище данных обычно строится по принципам, отличным от принципов реляционных баз данных.
Здесь, время на выборку простых данных измеряется в долях секунды, а запрос, превышающий несколько секунд, скорее всего, требует оптимизации.

Преагрегация
Кроме быстрой выборки существующих данных, также предоставляется возможность преагрегировать «наиболее вероятно-используемые» значения. Например, если мы имеем ежедневные записи о продажах какого-то товара, система может преагрегировать нам также месячные и квартальные суммы продаж, а значит, если мы запросим данные помесячно или поквартально, система нам мгновенно выдаст результат. Почему же преагрегация происходит не всегда – потому, что теоретически возможных комбинаций товаров/времени/и т.д. может быть огромное количество, а значит, нужно иметь четкие правила для каких элементов агрегация будет построена, а для каких нет. Вообще тема учета этих правил и собственно непосредственного дизайна агрегаций довольно обширна и сама по себе заслуживает отдельную статью.

Иерархии
Закономерно, что анализируя данные и строя конечные отчеты, возникает потребность учитывать то, что месяцы состоят из дней, а сами образуют кварталы, а города входят в области, которые в свою очередь являются частью регионов или стран. Хорошая новость то, что OLAP кубы изначально рассматривают данные с точки зрения иерархий и взаимоотношений с другими параметрам одной и той же сущности, так что построение и использования иерархией в кубах – дело очень простое.

Работа с временем
Так как в основном анализ данных происходит на временных участках, именно времени в OLAP системах выделено особое значение, а значит, просто определив для системы, где у нас тут время, в дальнейшем можно с легкостью пользоваться функциями типа Year To Date, Month To Date (период от начала года/месяца и до текущей даты), Parallel Period (в этот же день или месяц, но в прошлом году) и т.п.

Язык доступа к многомерным данным
MDX (Multidimensional Expressions) — язык запросов для простого и эффективного доступа к многомерным структурам данных. И этим все сказано – внизу будет несколько примеров.

Key Performance Indicators (KPI)
Ключевые показатели эффективности — это финансовая и нефинансовая система оценки, которая помогает организации определить достижение стратегических целей. Ключевые показатели эффективности могут быть достаточно просто определены в OLAP системах и использоваться в отчетах.

Дата майнинг
Интеллектуальный анализ данных (Data Mining) — по сути, выявление скрытых закономерностей или взаимосвязей между переменными в больших массивах данных.
Английский термин «Data Mining» не имеет однозначного перевода на русский язык (добыча данных, вскрытие данных, информационная проходка, извлечение данных/информации) поэтому в большинстве случаев используется в оригинале. Наиболее удачным непрямым переводом считается термин «интеллектуальный анализ данных» (ИАД). Впрочем, это отдельная, не менее интересная тема для рассмотрения.

Многоуровневое кэширование
Собственно для обеспечения наиболее высокой скорости доступа к данным, кроме хитрых структур данных и преагрегаций, OLAP системы поддерживают многоуровневое кэширование. Кроме кэширования простых запросов, также кэшируются части вычитанных из хранилища данных, агрегированные значения, вычисленные значения. Таким образом, чем дольше работаешь с OLAP кубом, тем быстрее он, по сути, начинает работать. Также существует понятие «разогрев кэша» — операция, подготавливающая OLAP систему к работе с конкретными отчетами, запросами или всем вместе взятым.

Поддержка мультиязычности
Да-да-да. Как минимум Analysis Services 2005/2008 (правда, Enterprise Edition) нативно поддерживают мультиязычность. Достаточно привести перевод строковых параметров ваших данных, и клиенту, указавшему свой язык, будут приходить локализированные данные.

Многомерные кубы


Так что же все-таки эти многомерные кубы?
Представим себе 3-х мерное пространство, у которого по осям Время, Товары и Покупатели.
Точка в таком пространстве будет задавать факт того, что кто-то из покупателей в каком-то месяце купил какой-то конкретный товар.

Многомерный куб

Фактически, плоскость (или множество всех таких точек) и будет являться кубом, а, соответственно, Время, Товары и Покупатели – его измерениями.
Представить (и нарисовать) четырехмерный и более куб немного сложнее, но суть от этого не меняется, а главное, для OLAP систем совершенно неважно в скольких измерениях вы будете работать (в разумных пределах, конечно).

Немного MDX


Итак, в чем же прелесть MDX – скорее всего в том, что описывать нужно не то как мы хотим выбрать данные, а что именно мы хотим.
Например,

SELECT
{ [Measures].[Units] } ON COLUMNS,
{ [Time].[June, 2009], [Time].[July, 2009] } ON ROWS
FROM [Sales]
WHERE ([Product].[iPhone], [Country].[Mozambik])


* This source code was highlighted with Source Code Highlighter.



Что означает – хочу количество iPhone-ов, проданных в июне и июле в Мозамбике.
При этом я описываю какие именно данные я хочу и как именно я хочу их увидеть в отчете.
Красиво, не правда ли?

А вот чуть посложнее:

WITH MEMBER AverageSpend AS
[Measures].[Amount] / [Measures].[Transaction Count]
SELECT
{ AverageSpend } ON COLUMNS,
{ [Customer].[Sex].[Female], [Customer].[Sex].[Male] } ON ROWS
FROM [Sales]
WHERE ([Shop].[Apple])


* This source code was highlighted with Source Code Highlighter.


Фактически, вначале определяем формулу подсчета «среднего размера покупки» и пытаемся сравнить – кто же (какой пол), за один заход в магазин Apple, тратит больше денег.

Сам язык чрезвычайно интересен и для изучения и для использования, и, пожалуй, заслуживает немало обсуждений.

Заключение


На самом деле, данная статья очень мало покрывает даже базовых понятий, я бы назвал ее «appetizer» — возможность заинтересовать хабра-сообщество данной тематикой и развивать ее дальше. Что же касается развития – тут огромное непаханое поле, а я буду рад ответить на все интересующие вопросы.

P.S. Это мой первый пост об OLAP и первая публикацию на Хабре — буду очень признателен за конструктивный фидбек.
Update: Перенес в SQL, перенесу в OLAP как только разрешат создавать новые блоги.
Tags:OLAPMDXdata mining
Hubs: SQL
Total votes 62: ↑59 and ↓3+56
Views106K

Popular right now

Top of the last 24 hours