Pull to refresh

Расслоение Хопфа и квантовая механика

Level of difficultyMedium
Reading time4 min
Views5.1K

В математике существует очень интересная тема, которая носит название "расслоение Хопфа". В 1931 году Хайнц Хопф опубликовал свою работу об открытой им в топологии конструкции, получившей в истории название "Hopf fibration" - расслоение Хопфа. Суть этой конструкции, была основана на геометрических разработках Уильяма Кингдона Клиффорда.

В поле зрение физиков-теоретиков, однако, она впервые попала лишь сорок с лишним лет спустя, в 1970-е годы, из-за прямых и непосредственных математических взаимосвязей между расслоением Хопфа и калибровочными симметриями в квантовой теории поля.

В данной небольшой статье рассмотрены некоторые основные моменты связанные с моим сайтом на котором рассматривается визуализация расслоения Хопфа.

Читать далее
Total votes 21: ↑22 and ↓-1+23
Comments6

Квантовые эффекты могут вызывать мутации в ДНК

Reading time2 min
Views5.1K

Туннельный эффект может вызвать кратковременные мутации ДНК. К такому выводу пришла команда из Центра квантовой биологии Леверхалма Университета Суррея, смоделировав процесс туннелирования протонов на компьютере.

Читать далее
Total votes 10: ↑10 and ↓0+10
Comments6

В Канаде спроектировали первый тепловой квантовый двигатель

Reading time2 min
Views13K
image

Группа физиков под руководством Джона Петерсона из Университета Ватерлоо Канады построила квантовый двигатель. Его коэффициент полезного действия близок к максимально возможному значению в своем классе.

Работа двигателя основывается на цикле Отто на топливе из ядер углерода с полуцелым спином. Они выделяют энергию за счет ядерного магнитного резонанса.
Читать дальше →
Total votes 17: ↑16 and ↓1+15
Comments14

Квантовая механика. Теоретический минимум

Reading time4 min
Views28K
В нашем издательстве вышла 3 книга Леонарда Сасскинда:

image

Прототип: Quantum Mechanics: The Theoretical Minimum

Классическая механика интуитивна: она ежедневно и многократно используется людьми для выживания. Но до двадцатого века никто и никогда не использовал квантовую механику. Она описывает вещи столь малые, что они полностью выпадают из области восприятия человеческих органов чувств. Единственный способ понять эту теорию, насладиться ее красотой — перекрыть нашу интуицию абстрактной математикой. Леонард Сасскинд – известный американский ученый – приглашает вас отправиться в увлекательное путешествие в страну квантовой механики. В пути вам пригодятся базовые знания из школьного курса физики, а также основы математического анализа и линейной алгебры. Также необходимо знать кое-что о вопросах, которые рассматривались в первой книге «теоретического минимума» Сасскинда – «Все, что нужно знать о современной физике». Но нестрашно, если эти знания несколько подзабылись. Многое автор напомнит и пояснит по ходу дела. Квантовая механика – необычная теория: согласно ее постулатам, например, мы можем знать все о системе и ничего о ее отдельных частях. По поводу этого и других противоречий в свое время много спорили Эйнштейн и Нильс Бор. Если вы не боитесь сложностей, обладаете пытливым умом, технически грамотны, искренне и глубоко интересуетесь физикой, то этот курс лекций Леонарда Сасскинда придется вам по душе. Книга концентрируется на логических принципах квантовой теории и ставит целью не сгладить парадоксальность квантовой логики, а вытащить ее на дневной свет и попытаться разобраться с непростыми вопросами, которые она поднимает.
Читать дальше →
Total votes 16: ↑14 and ↓2+12
Comments2

Квантовая механика макромира

Reading time6 min
Views25K


Первое, что обычно слышат студенты на лекциях по квантовой механике: не пытайтесь искать аналоги квантовых эффектов в макромире, мир квантовых частиц устроен принципиально иначе… Однако я обнаружил серию явлений в повседневной жизни с крайне похожими свойствами, которые, на мой взгляд, ставят под сомнение этот догмат. Хотя вернее будет сказать, что это просто иной способ взглянуть на привычные вещи. Своими наблюдениями и рассуждениями по этому поводу я и собираюсь поделиться в этой статье. Главный вопрос, который мне хотелось бы поставить перед читателями: можем ли мы извлечь что-нибудь продуктивное из данного подхода?
Читать дальше →
Total votes 23: ↑18 and ↓5+13
Comments23

Стандартная модель элементарных частиц для начинающих

Reading time5 min
Views74K
«Мы задаёмся вопросом, почему группа талантливых и преданных своему делу людей готова посвятит жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть? На самом деле, в занятиях физиков элементарных частиц проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живём» Шон Кэрролл

Если вы всё ещё боитесь фразы квантовая механика и до сих пор не знаете, что такое стандартная модель — добро пожаловать под кат. В своей публикации я попытаюсь максимально просто и наглядно объяснить азы квантового мира, а так же физики элементарных частиц. Мы попробуем разобраться, в чём основные отличия фермионов и бозонов, почему кварки имеют такие странные названия, и наконец, почему все так хотели найти Бозон Хиггса.
Читать дальше →
Total votes 43: ↑41 and ↓2+39
Comments58

Первый эксперимент, который корректно доказывает нарушение неравенства Белла

Reading time3 min
Views56K

Ведущий автор научной работы Бас Хенсен (Bas Hensen) и профессор Рональд Хансон (Ronald Hanson) настраивают установку для эксперимента Белла в точке А, откуда эмитируются электроны

В 1935 году Альберт Эйнштейн поставил под сомнение принцип квантовой теории о том, что наблюдение одной частицы мгновенно влияет на состояние связанной с ней частицы, где бы она ни находилась. Это означает, что информация от частицы к частице передаётся быстрее скорости света, что Эйнштейн считал невозможным и несовместимым с теорией относительности.
Читать дальше →
Total votes 40: ↑24 and ↓16+8
Comments100

Разбираем популярный миф: «Вещество на 99% состоит из пустоты»

Reading time6 min
Views131K

При обсуждении строения атома и вещества часто можно прочитать, что вещество на 99.99…% состоит из пустоты, с разными версиями количества девяток. Как мы сейчас увидим, это утверждение имеет весьма шаткие основания, а попытки оценить долю пустоты в веществе могут с одинаковым успехом дать любое число от 0 до 100%. Последовательное же рассмотрение вопроса в рамках квантовой механики показывает, что от пустоты вещество отличается довольно сильно.
Читать дальше →
Total votes 103: ↑100 and ↓3+97
Comments354

10 физических фактов, которые вы должны были узнать в школе, но, возможно, не узнали

Reading time6 min
Views75K
image

1. Энтропия измеряет не беспорядок, а вероятность


Идея о том, что энтропия – это мера беспорядка, совсем не помогает разобраться в вопросе. Допустим, я делаю тесто, для чего я разбиваю яйцо и выливаю его на муку. Затем добавляю сахар, масло, и смешиваю их до тех пор, пока тесто не становится однородным. Какое состояние является более упорядоченным – разбитое яйцо и масло на муке, или получившееся тесто?

Я бы сказала, что тесто. Но это состояние с большей энтропией. А если вы выберете вариант с яйцом на муке – как насчёт воды и масла? Энтропия выше, когда они разделены, или после того, как вы их яростно потрясёте, чтобы смешать? В данном примере энтропия выше у варианта с разделёнными веществами.

Энтропия определяется как количество “микросостояний”, дающих одно и то же “макросостояние”. В микросостояниях содержатся все детали по поводу отдельных составляющих системы. Макросостояние же характеризуется только общей информацией, вроде “разделено на два слоя” или “в среднем однородное”. У ингредиентов теста есть много разных состояний, и все они при смешивании превратятся в тесто, однако очень мало состояний сможет при смешивании разделиться на яйца и муку. Поэтому, у теста энтропия выше. То же работает для примера с водой и маслом. Их легче разделить, тяжелее смешать, поэтому у разделённого варианта энтропия выше.
Читать дальше →
Total votes 78: ↑68 and ↓10+58
Comments343

Квантовые шахматы

Reading time12 min
Views74K

Intro


Этот пост написан под впечатлением от вот этого отличного поста с Хабра, в котором автор наглядно, при помощи двумерных моделек, которые рисует его программа, объясняет как работает Специальная Теория Относительности.


Я работаю в IT, а по образованию – физик-теоретик. Уже долгое время увлекаюсь популяризацией науки, и теоретической физики в частности. Постараюсь аналогично вышеупомянутому посту о специальной теории относительности объяснить на специально подготовленном примере как работает квантовая механика.


Модель, которую я рассматриваю – отнюдь не нова. Более полугода назад Chris Cantwell разместил на YouTube анонс новой настольной игры: квантовых шахмат (многим, возможно, известно об этом из вот этого вирусного ролика).


Недавно игра вышла в Steam, она стоит 249 руб. Есть ещё другая реализация – бесплатное приложение для iOS (не знаю, есть ли оно в Google Play). Однако в процессе игр с друзьями я экспериментально выяснил, что она неправильная с точки зрения квантовой механики. Такую реализацию скорее можно назвать статистическими шахматами, а не квантовыми.


Поэтому я решил написать свою реализацию, с запутанностью и суперпозициями. В своей реализации я постарался исправить те недостатки, которые на мой взгляд присутствуют в версии на Steam (например, у меня пешки тоже могут ходить квантовыми ходами, как и все остальные фигуры). Про приложение для iOS и так всё понятно: любая реализация квантовых шахмат должна быть по-настоящему квантовой, т.е. не только быть вероятностной, но поддерживать такие эффекты квантовой механики как интерференция, запутанность, etc.

Читать дальше →
Total votes 96: ↑96 and ↓0+96
Comments201

Квантовая запутанность без путаницы — что это такое

Reading time7 min
Views23K

Введение


Появилось много популярных статей, где рассказывается о квантовой запутанности. Опыты с квантовой запутанностью весьма эффектны, но премиями не отмечены. Почему вот такие интересные для обывателя опыты не представляют интереса для учёных? Популярные статьи рассказывают об удивительных свойствах пар запутанных частиц — воздействие на одну приводит к мгновенному изменению состояния второй. И что же такое скрывается за термином «квантовая телепортация», о которой уже начали говорить, что она происходит со сверхсветовой скоростью. Давайте рассмотрим все это с точки зрения нормальной квантовой механики.
Читать дальше →
Total votes 18: ↑10 and ↓8+2
Comments47

Фигуры Хладни и квантовый хаос

Reading time11 min
Views63K

Насыпав песок на колеблющуюся упругую пластинку, можно увидеть формирование фигур Хладни. Они часто служат примером «естественной красоты» физических явлений, хотя за ними стоит довольно простая физика резонансного возбуждения стоячих волн. И мало кто обращает внимание на любопытную особенность этих фигур: линии на них избегают пересечений, будто их отталкивает некая сила. Давайте попробуем понять, какая же физика скрывается за этим отталкиванием и как она связана с квантовой теорией хаоса.
Total votes 85: ↑85 and ↓0+85
Comments53

Парадокс исчезновения информации в чёрной дыре — предложено объяснение

Reading time1 min
Views3.5K
Группа американских физиков предложила объяснение для известного парадокса исчезновения информации в чёрной дыре. Свои выкладки учёные опубликовали в журнале Physical Review.

Исчезновение информации в чёрной дыре — явление, которое должно происходить в чёрной дыре, если она действительно подчиняется термодинамическому описанию, предложенному Стивеном Хокингом в 1975 году. Однако, это явление до сих пор было несовместимо с общими принципами квантовой механики.
Читать дальше →
Total votes 29: ↑25 and ↓4+21
Comments55

Квантовая механика в фотосинтезе

Reading time2 min
Views3.8K
Физики смогли получить экспериментальные свидетельства влияния квантовой механики на процесс фотосинтеза. В последние годы был проведён ряд наблюдений, показавших, что квантовые эффекты там точно есть, но сейчас учёные доказали, что эти эффекты действительно связаны с переносом энергии в клетках.

Эксперимент, проведённый под руководством Грега Энгеля (Greg Engel) из Чикагского университета и Шауля Мукамеля (Shaul Mukamel) из Калифорнийского университета, показал, что перенос энергии от молекулярные комплексов-«антенн» (хлоросом) к реакционным центрам осуществляется с использованием эффекта квантовой когерентности — одного из базовых принципов квантовой механики, который означает присутствие одной и той же частицы в нескольких местах одновременно (с разной вероятностью).
Читать дальше →
Total votes 38: ↑33 and ↓5+28
Comments21

Квантовый компьютер стал на две секунды ближе к реальности

Reading time3 min
Views59K
Михаил Лукин из Российского квантового центра осуществил прорыв в постройке квантового компьютера. Ученые смогли достаточно долго сохранить данные в квантовой вычислительной системе — исследователи считают что мы стоим в одном шаге от создания реального квантового компьютера.

Всего полгода назад Лукин рассказывал на своей лекции в Москве как еще далеки мы от создания вычислительных машин основанных на квантовых эффектах и вот сегодня из его лаборатории поступила новость опережающая свое время. Оказалось, что будущее уже на пороге.

image
Лекция в Digital October

Под руководством Лукина группа ученых из Гарвардского университета смогла создать квантовые биты, хранящие информацию в течение примерно 2 секунд. Это примерно на 6 порядков дольше, чем в ходе предыдущих экспериментов. Отдельной особенностью созданного кубита стало то, что он способен работать при комнатной температуре.

Квантовый бит (или кубит) — это наименьший элемент для хранения информации в квантовом компьютере. По мнению исследователей, гарвардский эксперимент сделал на шаг ближе квантовые вычислительные системы.

Большинство существующих квантовых систем создаются на базе сложного и дорогого оборудования, включая установки, охлаждающие систему до абсолютного нуля (-273 по Цельсию). Группа ученых во главе с гарвардским профессором физики Михаилом Лукиным (Mikhail Lukin) использовала алмазы, выращенные в лабораторных условиях.

"То, что нам удалось достичь в плане контроля, — поистине беспрецедентно, — прокомментировал Лукин. — Мы получили кубит при комнатной температуре. Мы смогли записать информацию в него и сохранить ее в течение относительно долгого времени. Мы полагаем, что данный эксперимент имеет лишь технические ограничения. То есть выглядит вполне реальной возможность продления периода существования кубита на часы. В этом случае становится возможным внедрение реальных квантовых вычислительных систем".

Читать дальше →
Total votes 85: ↑78 and ↓7+71
Comments76

Слабое квантовое измерение, или Реанимация для кота Шрёдингера

Reading time4 min
Views80K
Сегодня, блуждая по просторам интернетов, я наткнулся на описание одного эксперимента группы американских учёных под руководством Надава Каца, которые смогли отменить коллапс волновой функции кубита, тем самым подтвердив теорию Александра Короткова и Эндрю Джордана.

Пока научное сообщество очень настороженно отнеслось к этому результату; однако, если теория Короткова-Джордана верна (а она, кажется, верна), то это приведёт к революции сначала в квантовой механике, потом в современной физике, а потом просто перевернёт мир. Именно так.

Сейчас попробую объяснить, почему.

Читать дальше →
Total votes 139: ↑133 and ↓6+127
Comments344

Квантовый компьютер: любое сложное состоит из набора простого

Reading time13 min
Views34K
В офф-топик внесены изменения

Пост написан по следующей задумке алгоритму

1.Попытка взглянуть на потенциальные (почти фантастические) возможности квантовых компьютеров
2.Обзор новых исследований и достижений
3.Обьяснить феномен квантовой сцепленности на простом примере
4. Литература


Уплотняя с помощью JPEG и MPEG визуальные материалы, вдруг странная мысль пришла в голову: в случае с виртуальной картинкой или видео речь идет сжатии двухмерного обьекта. А как же быть с трехмерным объектом (например, описанием и сжатием информационного эквивалента антропоморфного обьекта)?



Все программы сжатия данных работают по одному и тому же принципу. Программа просматривает картинку строка за строкой и разыскивает смежные пикселы, имеющие один и тот же цвет. Ясно, что описание трехмерного обьекта потребовало колоссальной по объему информации. В большом компьютере Tianhe-1A (TH-1A), предназначенном для параллельной обработки данных, содержится эквивалент 50 тыс. процессоров. А что произойдет, если заставить работать в параллель эквивалент 32 млрд процессоров?
Читать дальше →
Total votes 89: ↑61 and ↓28+33
Comments59

Квантовые шашки — make checkers great again

Reading time3 min
Views7.1K
котики

Мы добавили правила на основе квантовой теории в шашки, чтобы сделать их менее предсказуемыми и сломать стандартные тактики игры. Это не просто игра, это интерактивное представление квантовой теории с такими эффектами как суперпозиция и квантовая запутанность.
Читать дальше →
Total votes 33: ↑33 and ↓0+33
Comments33

Новый квантовый парадокс уточняет, в каком случае наши представления о реальности оказываются неверными

Reading time12 min
Views67K

Новый мысленный эксперимент взбудоражил мир основ квантовой физики и заставил физиков уточнить, как различные интерпретации квантовой теории (многомировая или копенгагенская) заставляют отказаться от кажущихся разумными предположений, касающихся реальности.



Если монетка не может выпасть орлом и решкой одновременно, физикам нужно отбросить простые предположения касаемо природы реальности

Никто не спорит с тем, что квантовая механика является успешной теорией. Она делает потрясающе точные предсказания по поводу природы мира на микроскопических масштабах. Споры, продолжающиеся уже почти сто лет, касаются того, что она говорит нам по поводу существования и реальности объектов. Есть целая куча интерпретаций, дающих свой ответ на этот вопрос, каждая из которых требует поверить определённым, и пока неподтверждённым заявлениям – то есть, предположениям – касающимся природы реальности.

Новый мысленный эксперимент бросает вызов этим предположениям и раскачивает основы квантовой физики. Он, конечно, и сам странный. К примеру, он требует проводить измерения, способные стереть любые воспоминания о только что проделанном наблюдении. С людьми это невозможно, а квантовые компьютеры могли бы провести такой странный эксперимент и, теоретически, найти различия между разными интерпретациями квантовой физики.
Читать дальше →
Total votes 28: ↑22 and ↓6+16
Comments50