Pull to refresh

Математика и физика для простой и результативной учёбы (Серия: Сельскому учителю в помощь). Часть II: Предмет математики

Level of difficultyEasy
Reading time33 min
Views5K

Мы познакомимся с элементами математики, каждодневно пользуемыми каждым естествознателем (математиком, физиком, инженером). Высшее образование строят на их познании и умении применить. В доступном изложении вы узнаете о современной геометрии и универсальных инструментах математической физики и инженерии (пространстве состояний, уравнениях движения, теории поля, энергии, конечных автоматах).

Начать путешествие
Total votes 13: ↑5 and ↓8-3
Comments57

Магия тензорной алгебры: Часть 4 — Динамика точки в тензорном изложении

Reading time8 min
Views31K

Содержание


  1. Что такое тензор и для чего он нужен?
  2. Векторные и тензорные операции. Ранги тензоров
  3. Криволинейные координаты
  4. Динамика точки в тензорном изложении
  5. Действия над тензорами и некоторые другие теоретические вопросы
  6. Кинематика свободного твердого тела. Природа угловой скорости
  7. Конечный поворот твердого тела. Свойства тензора поворота и способ его вычисления
  8. О свертках тензора Леви-Чивиты
  9. Вывод тензора угловой скорости через параметры конечного поворота. Применяем голову и Maxima
  10. Получаем вектор угловой скорости. Работаем над недочетами
  11. Ускорение точки тела при свободном движении. Угловое ускорение твердого тела
  12. Параметры Родрига-Гамильтона в кинематике твердого тела
  13. СКА Maxima в задачах преобразования тензорных выражений. Угловые скорость и ускорения в параметрах Родрига-Гамильтона
  14. Нестандартное введение в динамику твердого тела
  15. Движение несвободного твердого тела
  16. Свойства тензора инерции твердого тела
  17. Зарисовка о гайке Джанибекова
  18. Математическое моделирование эффекта Джанибекова


Введение


Итак, настал момент применить на практике всё то, о чем мы так долго рассуждали теоретически. Данная заметка будет использовать в основном материал предыдущей статьи, в которой есть ссылки на предыдущие публикации по тензорной тематике.

А заниматься мы будем механикой. Именно решение задач механики и побудило меня разбираться с тензорным исчислением. И поговорим мы об уравнениях Лагранжа 2 рода, которые применяются для анализа движения сложных механических систем. Эти уравнения имеют вид, хорошо известный большинству специалистов в данной области

\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}^i} \right ) - \frac{\partial T}{\partial q^i} = Q_i \quad i = \overline{1,s}

где s — число степеней свободы механической системы; q^i — обобщенная координата; T = T\left(\vec{q}, \, \dot{\vec{q}} \right ) — кинетическая энергия механической системы; Q^i — обобщенная сила.

Те, кто сталкивался с этими уравнениями наверняка замечали, что после выполнения трехкратного дифференцирования кинетической энергии получаются выражения, представленные линейной комбинацией вторых производных от обобщенных координат и линейной комбинации произведений их первых производных. И это, по крайней мере меня, наводило на мысль о том, что кинетическую энергию можно продифференцировать один раз в общем виде, а потом просто составлять уравнения движения, используя полученные выражения общего вида. Только вот попытки проделать это самостоятельно не приводили меня к успеху.

Тем не менее это можно сделать, если опираться на тензорное исчисление, в общем и не прибегая к дифференцированию кинетической энергии (хотя такой подход тоже возможен). И мы сделаем это в данной статье, правда пока только для точки, и заодно решим какую-нибудь не слишком сложную задачку, иллюстрирующую эффективность рассмотренного подхода.

Что же, начнем!
Читать дальше →
Total votes 32: ↑32 and ↓0+32
Comments5

Принцип наименьшего действия в аналитической механике

Reading time10 min
Views23K

Предыстория




Причина данной публикации — неоднозначная статья на тему принципа наименьшего действия (ПНД), опубликованная на ресурсе несколько дней назад. Неоднозначна она потому, что её автор в популярной форме пытается донести до читателя один из основополагающих принципов математического описания природы, и это частично ему удается. Если бы не одно но, притаившееся в конце публикации. Под спойлером приведена полная цитата данного отрывка

Задача о движении шарика

Не все так просто


На самом деле я немного обманул, сказав, что тела всегда двигаются так, чтобы минимизировать действие. Хотя в очень многих случаях это действительно так, можно придумать ситуации, в которых действие явно не минимально.

Например, возьмем шарик и поместим его в пустое пространство. На некотором отдалении от него поставим упругую стенку. Допустим, мы хотим, чтобы через некоторое время шарик оказался в том же самом месте. При таких заданных условиях шарик может двигаться двумя разными способами. Во-первых, он может просто оставаться на месте. Во-вторых, можно его толкнуть по направлению к стенке. Шарик долетит до стенки, отскочит от нее и вернется обратно. Понятно, что можно толкнуть его с такой скоростью, чтобы он вернулся в точно нужное время.

image

Оба варианта движения шарика возможны, но действие во втором случае получится больше, потому что все это время шарик будет двигаться с ненулевой кинетической энергией.

Как же спасти принцип наименьшего действия, чтобы он был справедлив и в таких ситуациях? Об этом мы поговорим в следующий раз.

Так в чем же, с моей точки зрения, проблема?
Читать дальше →
Total votes 33: ↑31 and ↓2+29
Comments80