Pull to refresh

Нужна система с низкими задержками? Выбираем Java вместо C++

Reading time7 min
Views17K

Все разработчики знают, что есть два способа сделать дело: первый — вручную, медленно, нервно, сложно, либо второй – автоматизировано, быстро и еще сложнее.

Например, я мог бы продолжить писать эту статью о том, почему стоит использовать Java вместо C++ при программировании систем с низкой задержкой. Либо мог бы обучить ИИ, чтобы он сделал это за меня. Второй подход, в конце концов, сэкономил бы мне массу времени – искусственный интеллект генерировал бы за меня тысячи статей в секунду – но редактор вряд ли обрадовался бы услышать, что на подготовку первой статьи мне нужно два года.

Аналогичная ситуация возникает при необходимости разработать систему с низкой задержкой.

Читать далее
Total votes 62: ↑34 and ↓28+6
Comments181

Вейвлет – анализ. Основы

Reading time8 min
Views62K

Введение


Английское слово wavelet (от французского «ondelette») дословно переводится как «короткая (маленькая) волна». В различных переводах зарубежных статей на русский язык встречаются еще термины: «всплеск», «всплесковая функция», «маловолновая функция», «волночка» и др.

Вейвлет-преобразование (ВП) широко используется для анализа сигналов. Помимо этого, оно находит большое применение в области сжатия данных. ВП одномерного сигнала – это его представление ввиде обобщенного ряда или интеграла Фурье по системе базисных функций.

$\psi _{ab}(t)=\frac{1}{\sqrt{a}}\psi \left ( \frac{t-b}{a} \right ) $, (1)

сконструированных из материнского (исходного) вейвлета $\psi(t)$, обладающего определенными свойствами за счет операций сдвига во времени ( b ) и изменения временного масштаба (a).

Множитель $1/\sqrt{a}$ обеспечивает независимость нормы функций (1) от масштабирующего числа (a). Для заданных значений параметров a и b функция $\psi_{ab}(t)$ и есть вейвлет, порождаемый материнским вейвлетом $\psi(t)$.

В качестве примера приведём вейвлет «мексиканская шляпа» во временной и частотной областях:

Листинг вейвлета для временной области
from numpy import*
import matplotlib.pyplot as plt
x= arange(-4,30,0.01)
def w(a,b,t):    
    f =(1/a**0.5)*exp(-0.5*((t-b)/a)**2)* (((t-b)/a)**2-1)
    return f
plt.title("Вейвлет «Мексиканская шляпа»:\n$1/\sqrt{a}*exp(-0,5*t^{2}/a^{2})*(t^{2}-1)$")
y=[w(1,12,t) for t in x]
plt.plot(x,y,label="$\psi(t)$ a=1,b=12") 
y=[w(2,12,t) for t in x]
plt.plot(x,y,label="$\psi_{ab}(t)$ a=2 b=12")   
y=[w(4,12,t) for t in x]
plt.plot(x,y,label="$\psi_{ab}(t)$ a=4 b=12")   
plt.legend(loc='best')
plt.grid(True)
plt.show()



Читать дальше →
Total votes 33: ↑30 and ↓3+27
Comments15

Вейвлет — анализ.Часть 1

Reading time10 min
Views37K

Введение


Рассмотрим дискретное вейвлет – преобразования (DWT), реализованное в библиотеке PyWavelets PyWavelets 1.0.3. PyWavelets — это бесплатное программное обеспечение с открытым исходным кодом, выпущенное по лицензии MIT.

При обработке данных на компьютере может выполняться дискретизированная версия непрерывного вейвлет-преобразования, основы которого описаны в моей предыдущей статье. Однако, задание дискретных значений параметров (a,b) вейвлетов с произвольным шагом Δa и Δb требует большого числа вычислений.

Кроме того, в результате получается избыточное количество коэффициентов, намного превосходящее число отсчетов исходного сигнала, которое не требуется для его реконструкции.

Дискретное вейвлет – преобразование (DWT), реализованное в библиотеке PyWavelets, обеспечивает достаточно информации как для анализа сигнала, так и для его синтеза, являясь вместе с тем экономным по числу операций и по требуемой памяти.

Когда нужно использовать вейвлет-преобразование вместо преобразования Фурье


Преобразования Фурье будет работать очень хорошо, когда частотный спектр стационарный. При этом частоты, присутствующие в сигнале, не зависят от времени, и сигнал содержит частоты xHz, которые присутствует в любом месте сигнала. Чем нестационарнее сигнал, тем хуже будут результаты. Это проблема, так как большинство сигналов, которые мы видим в реальной жизни, нестационарны по своей природе.
Читать дальше →
Total votes 34: ↑31 and ↓3+28
Comments19

Вейвлет – анализ. Часть 2

Reading time10 min
Views20K

Введение


В данной публикации рассматривается вейвлет – анализ временных рядов. Основная идея вейвлет-преобразования отвечает специфике многих временных рядов, демонстрирующих эволюцию во времени своих основных характеристик – среднего значения, дисперсии, периодов, амплитуд и фаз гармонических компонент. Подавляющее большинство процессов, изучаемых в различных областях знаний, имеют вышеперечисленные особенности.

Целью настоящей публикации является описание методики непрерывного вейвлет- преобразования временных рядов средствами библиотеки PyWavelets..

Немного истории

Инженер-геофизик Д. Морле в конце 70-х годов XX в. столкнулся с проблемой анализа сигналов от сейсмодатчиков, которые содержали высокочастотную компоненту (сейсмическая активность) в течение короткого промежутка времени и низкочастотные составляющие (спокойное состояние земной коры) – в течение длительного периода. Оконное преобразование Фурье позволяет анализировать либо высокочастотную составляющую, либо низкочастотную составляющую, но не обе составляющие сразу.

Поэтому, был предложен метод анализа, в котором ширина оконной функции для низких частот увеличивалась, а для высоких частот – уменьшалась. Новое оконное преобразование получалось в результате растяжения (сжатия) и смещения по времени одной порождающей (так называемой скейлинг-функции – scaling function, scalet) функции. Эта порождающая функция была названа вейвлетом Д. Морле.

Вейвлет Д. Морле
 from pylab import*
import scaleogram as scg
axes = scg.plot_wav('cmor1-1.5', figsize=(14,3))
show()



Читать дальше →
Total votes 17: ↑16 and ↓1+15
Comments0