Pull to refresh

Осваиваем Python. Унция ноль. Введение.

Reading time 4 min
Views 126K
Programming *

Предыстория



Присоединяюсь к MaxElc, DarwinTenk и Devgru :) Начинаю цикл статей посвященных Python. Сам я имею некоторый опыт обращения с PHP и Java. Но каждый раз, при относительном освоении какого-то инструмента — оставалось определённое неудовлетворение им, связанное с чем-то конкретным, и поиски продолжались. На сегодняшний день наиболее близко к идеалу в моих глазах стоит Python. Идеал недостижим — это понятно, посему и у Python есть недостатки. Прежде всего — это скорость выполнения, однако, эта проблема решаема несколькими путями и об этом мы обязательно поговорим чуть позднее.
Сам я начал осваивать Python буквально недавно. Начиная этот цикл статей — я преследую несколько целей. Во-первых, это дополнительная само мотивация + интерактивность, во-вторых, опыт. В-третьих, блуждая по просторам рунета — вижу, что Python куда менее популярен, чем в мире. Ситуацию надо исправлять :)
В соответствии с идеологией Python, а именно с тем, что одни из главных его козырей — это быстрота в освоении и скорость разработки, мы достаточно быстро, практически тезисно пронесёмся по основам синтаксиса и построения программ и перейдём к основной цели данного цикла — освоение django.
Итак, мы начинаем.
Читать дальше →
Total votes 90: ↑78 and ↓12 +66
Comments 86

Введение в Python

Reading time 12 min
Views 79K
Python *Machine learning *
В данной статье мы затронем основы Python. Мы все ближе и ближе к цели, в общем, скоро приступим к работе с основными библиотеками для Data Science и будем использовать TensorFlow (для написания и развертывания нейросетей, тобишь Deep Learning).

Установка


Python можно скачать с python.org. Однако если он еще не установлен, то вместо
него рекомендую дистрибутивный пакет Anaconda, который уже включает в себя большинство библиотек, необходимых для работы в области науки о данных.

Если вы не используете дистрибутив Anaconda, то не забудьте установить менеджер пакетов pip, позволяющий легко устанавливать сторонние пакеты, поскольку некоторые из них нам понадобятся. Стоит также установить намного более удобную для работы интерактивную оболочку IPython. Следует учитывать, что дистрибутив Anaconda идет вместе с pip и IPython.

Пробельные символы


Во многих языках программирования для разграничения блоков кода используются
фигурные скобки. В Python используются отступы:

# пример отступов во вложенных циклах for
for i in [ 1, 2, 3, 4, 5] :
print (i) # первая строка в блоке for i
for j in (1, 2, З, 4, 5 ] :
print ( j ) # первая строка в блоке for j
print (i + j) # последняя строка в блоке for j
print (i) # последняя строка в блоке for i
print ( "циклы закончились ")
Читать дальше →
Total votes 76: ↑15 and ↓61 -46
Comments 98