Pull to refresh

Лекции Техносферы. 1 семестр. Алгоритмы интеллектуальной обработки больших объемов данных

VK corporate blog Data Mining *Algorithms *Big Data *Machine learning *
Tutorial
Продолжаем публиковать материалы наших образовательных проектов. В этот раз предлагаем ознакомиться с лекциями Техносферы по курсу «Алгоритмы интеллектуальной обработки больших объемов данных». Цель курса — изучение студентами как классических, так и современных подходов к решению задач Data Mining, основанных на алгоритмах машинного обучения. Преподаватели курса: Николай Анохин (@anokhinn), Владимир Гулин (@vgulin) и Павел Нестеров (@mephistopheies).



Объемы данных, ежедневно генерируемые сервисами крупной интернет-компании, поистине огромны. Цель динамично развивающейся в последние годы дисциплины Data Mining состоит в разработке подходов, позволяющих эффективно обрабатывать такие данные для извлечения полезной для бизнеса информации. Эта информация может быть использована при создании рекомендательных и поисковых систем, оптимизации рекламных сервисов или при принятии ключевых бизнес-решений.
Читать дальше →
Total votes 47: ↑46 and ↓1 +45
Views 48K
Comments 15

Лекции Техносферы. 1 семестр. Методы использования СУБД в интернет-приложениях

VK corporate blog Algorithms *Big Data *
Tutorial


Сегодня мы предлагаем вашему вниманию очередную публикацию в рамках постоянной рубрики «Лекции Техносферы». В этот раз вы можете изучить материалы по курсу «Методы использования СУБД в интернет-приложениях». Цель курса — изучение топологии, многообразия и основных принципов функционирования систем хранения данных, а также алгоритмов, заложенных в основу как централизованных, так и распределённых систем, демонстрация фундаментальных компромиссов присущих тем или иным решениям. Преподаватели курса: Константин Осипов kostja, Евгений Блих bigbes, Роман Цисык.
Читать дальше →
Total votes 36: ↑32 and ↓4 +28
Views 31K
Comments 2

Лекции Техносферы. 2 семестр. Современные методы и средства построения систем информационного поиска

VK corporate blog Search engines *Algorithms *Mathematics *
Tutorial


Снова в эфире наша образовательная рубрика. На этот раз предлагаем ознакомиться с очередным курсом Техносферы, посвящённым информационному поиску. Цель курса — рассказать об основных методах, применяемых при создании поисковых систем. Некоторые из них представляют собой хороший пример смекалки, некоторые показывают, где и как может применяться современный математический аппарат. Преподаватели курса: Алексей Воропаев, Владимир Гулин, Дмитрий Соловьев, Игорь Андреев, Алексей Романенко, Ян Кисель.
Читать дальше →
Total votes 21: ↑21 and ↓0 +21
Views 20K
Comments 0

Лекции Техносферы. 2 семестр. Методы распределенной обработки больших объемов данных в Hadoop

VK corporate blog High performance *Big Data *Mathematics *Hadoop *
Tutorial
Предлагаем вашему вниманию новый курс лекций Техносферы. Он представляет собой введение в Hadoop, фокусируясь на проектировании и реализации распределенных алгоритмов, которые могут применяться в различных сферах: обработка текстов, графов, связанных данных и т.п. Также рассматриваются различные компоненты платформы Hadoop и программные модели. Целью курса является знакомство студентов со стеком технологий Hadoop, применяемых для хранения, доступа и обработки больших объемов данных. Преподаватели курса: Алексей Романенко, Михаил Фирулик, Николай Анохин.

Лекция 1. Введение в Big Data и MapReduce


Что такое «большие данные». История возникновения этого явления. Необходимые знания и навыки для работы с большими данными. Что такое Hadoop, где он применяется. Что такое «облачные вычисления», история возникновения и развития технологии. Web 2.0. Вычисление как услуга (utility computing). Виртуализация. Инфраструктура как сервис (IaaS). Вопросы параллелизма. Управление множеством воркеров. Дата-центры и масштабируемость. Типичные задачи Big Data. MapReduce: что это такое, примеры. Распределённая файловая система. Google File System. HDFS как клон GFS, его архитектура.


Читать дальше →
Total votes 34: ↑34 and ↓0 +34
Views 34K
Comments 3

Лекции Техносферы. 2 семестр. Методы обеспечения качества и тестирования web-приложений

VK corporate blog IT systems testing *Web services testing *
Лето только начинается, но это не повод прекращать учиться. Предлагаем вам ознакомиться с очередной порцией знаний в рамках проекта «Лекции Техносферы». Цель курса — ознакомить студентов с актуальными методологиями тестирования и обеспечения качества современных веб-приложений. Курс позволит слушателям получить достаточные знания для овладения и применения на практике эффективных приемов построения процесса тестирования и обеспечения качества.

Курс дает представление о процессах обеспечения качества, рассказывая о различных его этапах. Акцентируется внимание на контроле качества, оптимизации тестирования, как с помощью практик тест-дизайна, так и с помощью вспомогательных инструментов и автоматизации. Курс позволит понять не только важность и необходимость обеспечения качества в процессе разработки ПО, но и позволит ознакомиться с эффективными современными практиками этой процедуры.


Читать дальше →
Total votes 20: ↑18 and ↓2 +16
Views 81K
Comments 1

Лекции Техносферы. 1 семестр. Введение в анализ данных (весна 2016)

VK corporate blog Python *Algorithms *Mathematics *R *
Слушайте и смотрите новую подборку лекций Техносферы Mail.Ru. На этот раз представляем в открытом доступе весенний курс «Введение в анализ данных», на котором слушателей знакомят со сферой анализа данных, основными инструментами, задачами и методами, с которыми сталкивается любой исследователь данных в работе. Курс преподают Евгений Завьялов (аналитик проекта Поиск Mail.Ru, занимающийся извлечением полезных бизнесу знаний из данных, генерируемых поисковым движком и десктопными приложениями), Михаил Гришин (программист-исследователь из отдела анализа данных) и Сергей Рыбалкин (старший программист из студии Allods Team).

Лекция 1. Введение в Python


Из первой лекции вы узнаете, что такое анализ данных, какие инструменты используют для анализа данных, а также как работает Python.


Читать дальше →
Total votes 70: ↑65 and ↓5 +60
Views 41K
Comments 10

Лекции Техносферы. 2 семестр. Информационный поиск (весна 2016)

VK corporate blog Website development *Search engines *Semantics *Algorithms *
Современная поисковая система, качество работы которой воспринимается как данность, является сложнейшим программно-аппаратным комплексом, создателям которого пришлось решить огромное количество практических проблем, начиная от большого объема обрабатываемых данных и заканчивая нюансами восприятия человеком поисковой выдачи. На курсе второго семестра Техносферы «Современные методы и средства построения систем информационного поиска» мы рассказываем об основных методах, применяемых при создании поисковых систем. Некоторые из них — хороший пример смекалки, некоторые показывают, где и как может применяться современный математический аппарат.

Авторы курса — создатели поисковой системы на портале Mail.Ru — делятся собственным опытом разработки систем искусственного интеллекта. В курсе рассказывается, насколько интересно и увлекательно делать поисковую систему, решать задачи обработки текстов на естественном языке, а также какие используются методы и средства решения таких задач.

Лекция 1. «Введение в информационный поиск»




Алексей Воропаев, руководитель группы рекомендаций Поиска Mail.Ru, дает определение понятия информационного поиска и делает обзор существующих поисковых систем, рассказывает об индексации и поисковых кластерах.
Total votes 35: ↑35 and ↓0 +35
Views 7.5K
Comments 0

Лекции Техносферы. Нейронные сети в машинном обучении

VK corporate blog Algorithms *Big Data *Machine learning *


Представляем вашему вниманию очередную порцию лекций Техносферы. На курсе изучается использование нейросетевых алгоритмов в различных отраслях, а также отрабатываются все изученные методы на практических задачах. Вы познакомитесь как с классическими, так и с недавно предложенными, но уже зарекомендовавшими себя нейросетевыми алгоритмами. Так как курс ориентирован на практику, вы получите опыт реализации классификаторов изображений, системы переноса стиля и генерации изображений при помощи GAN. Вы научитесь реализовать нейронные сети как с нуля, так и на основе библиотеке PyTorch. Узнаете, как сделать своего чат-бота, как обучать нейросеть играть в компьютерную игру и генерировать человеческие лица. Вы также получите опыт чтения научных статей и самостоятельного проведения научного исследования.

Total votes 55: ↑54 and ↓1 +53
Views 31K
Comments 6