Pull to refresh

Классификация данных методом опорных векторов

Data Mining *
Sandbox
Добрый день!

В данной статье я хочу рассказать о проблеме классификации данных методом опорных векторов (Support Vector Machine, SVM). Такая классификация имеет довольно широкое применение: от распознавания образов или создания спам-фильтров до вычисления распределения горячих аллюминиевых частиц в ракетных выхлопах.

Сначала несколько слов об исходной задаче. Задача классификации состоит в определении к какому классу из, как минимум, двух изначально известных относится данный объект. Обычно таким объектом является вектор в n-мерном вещественном пространстве . Координаты вектора описывают отдельные аттрибуты объекта. Например, цвет c, заданный в модели RGB, является вектором в трехмерном пространстве: c=(red, green, blue).

Читать дальше →
Total votes 82: ↑78 and ↓4 +74
Views 128K
Comments 27

Порождение и выбор моделей машинного обучения. Лекция в Яндексе

Яндекс corporate blog Entertaining tasks Algorithms *Mathematics *Machine learning *
Применение машинного обучения может включать работу с данными, тонкую настройку уже обученного алгоритма и т. д. Но масштабная математическая подготовка нужна и на более раннем этапе: когда вы только выбираете модель для дальнейшего использования. Можно выбирать «вручную», применяя разные модели, а можно и этот процесс попробовать автоматизировать.


Под катом — лекция ведущего научного сотрудника РАН, доктора наук и главного редактора журнала «Машинное обучение и анализ данных» Вадима Стрижова, а также большинство слайдов.

Total votes 50: ↑49 and ↓1 +48
Views 21K
Comments 1

SVM. Подробный разбор метода опорных векторов, реализация на python

Open Data Science corporate blog Python *Data Mining *Algorithms *Machine learning *

Привет всем, кто выбрал путь ML-самурая!


Введение:


В данной статье рассмотрим метод опорных векторов (англ. SVM, Support Vector Machine) для задачи классификации. Будет представлена основная идея алгоритма, вывод настройки его весов и разобрана простая реализация своими руками. На примере датасета $Iris$ будет продемонстрирована работа написанного алгоритма с линейно разделимыми/неразделимыми данными в пространстве $R^2$ и визуализация обучения/прогноза. Дополнительно будут озвучены плюсы и минусы алгоритма, его модификации.


image
Рисунок 1. Фото цветка ириса из открытых источников

Читать дальше →
Total votes 52: ↑51 and ↓1 +50
Views 77K
Comments 5