Pull to refresh
  • by relevance
  • by date
  • by rating

Нейросети обучили создавать 3D-голограммы на смартфоне практически в реальном времени

Working with 3D-graphics *Machine learning *Development for AR and VR *Smartphones AR and VR

Исследователи из Массачусетского технологического института разработали новый способ быстрого создания голограмм. Основанный на глубоком обучении метод может генерировать голограммы на ноутбуке моментально.

Кроме того, этот способ позволяет быстро создавать фотореалистичные цветные 3D-голограммы даже на смартфоне. Новой технологии можно найти применение в гарнитурах виртуальной и дополненной реальности и других приложениях.

Читать далее
Total votes 10: ↑9 and ↓1 +8
Views 7.3K
Comments 3

Логика мышления. Часть 3. Персептрон, сверточные сети

Robotics Biotechnologies Artificial Intelligence Brain


В первой части мы описали свойства нейронов. Во второй говорили об основных свойствах, связанных с их обучением. Уже в следующей части мы перейдем к описанию того как работает реальный мозг. Но перед этим нам надо сделать последнее усилие и воспринять еще немного теории. Сейчас это скорее всего покажется не особо интересным. Пожалуй, я и сам бы заминусовал такой учебный пост. Но вся эта «азбука» сильно поможет нам разобраться в дальнейшем.

Персептрон


В машинном обучении разделяют два основных подхода: обучение с учителем и обучение без учителя. Описанные ранее методы выделения главных компонент – это обучение без учителя. Нейронная сеть не получает никаких пояснений к тому, что подается ей на вход. Она просто выделяет те статистические закономерности, что присутствуют во входном потоке данных. В отличие от этого обучение с учителем предполагает, что для части входных образов, называемых обучающей выборкой, нам известно, какой выходной результат мы хотим получить. Соответственно, задача – так настроить нейронную сеть, чтобы уловить закономерности, которые связывают входные и выходные данные.
Читать дальше →
Total votes 62: ↑54 and ↓8 +46
Views 70K
Comments 20

Новость позвала в дорогу: сверхбыстрый энергоэффективный оптический сопроцессор для больших данных

Data Mining *Algorithms *Image processing *Big Data *Machine learning *


На прошлой неделе Phys.org разразился новостью: стартап LightOn предложил альтернативу центральным процессорам (CPU) и графическим процессорам (GPU) для решения задач анализа больших данных. Авторский коллектив базируется в университете Пьера и Марии Кюри, Сорбонне и всех прочих правильных местах во Франции. Решение основано на оптической аналоговой обработке данных «со скоростью света». Звучит интересно. Поскольку в пресс-релизе не было никаких научно-технических подробностей, пришлось поискать информацию в патентных базах данных и на сайтах университетов. Результаты расследования под катом.
Читать дальше →
Total votes 26: ↑26 and ↓0 +26
Views 11K
Comments 14

Нейрореволюция в головах и сёлах

Algorithms *Image processing *Machine learning *
В последнее время всё чаще и чаще слышишь мнение, что сейчас происходит технологическая революция. Бытует мнение, что мир стремительно меняется.



На мой взгляд такое и правда происходит. И одна из главных движущих сил — новые алгоритмы обучения, позволяющие обрабатывать большие объёмы информации. Современные разработки в области компьютерного зрения и алгоритмов машинного обучения могут быстро принимать решения с точностью не хуже профессионалов.

Я работаю в области связанной с анализом изображений. Это одна из областей которую новые идеи затронули сильнее всего. Одна из таких идей — свёрточные нейронные сети. Четыре года назад с их помощью впервые начали выигрывать конкурсы по обработке изображений. Победы не остались незамеченными. Нейронными сетями, до тех пор стоящими на вторых ролях, стали заниматься и пользоваться десятки тысяч последователей. В результате, полтора-два года назад начался бум, породивший множество идей, алгоритмов, статей.

В своём рассказе я сделаю обзор тех идей, которые появились за последние пару лет и зацепили мою тематику. Почему происходящее — революция и чего от неё ждать.

Кто лишится в ближайшие лет десять работы, а у кого будут новые перспективные вакансии.
Читать дальше →
Total votes 78: ↑76 and ↓2 +74
Views 91K
Comments 124

Использование сверточных сетей для поиска, выделения и классификации

Recognitor corporate blog Image processing *Machine learning *
Недавно ZlodeiBaal опубликовал статью «Нейрореволюция в головах и сёлах», в которой привел обзор возможностей современных нейронных сетей. Самым интересным, на мой взгляд, является подход с использованием сверточных сетей для сегментации изображений, про этот подход и пойдет речь в статье.

segnet.png


Уже давно появилось желание изучить сверточные сети и узнать что-то новое, к тому же под рукой есть несколько последних Tesla K40 с 12Гб памяти, Tesla c2050, обычные видеокарты, Jetson TK1 и ноутбук с мобильной GT525M, интереснее всего конечно попробовать на TK1, так как его можно использовать практически везде, хоть на столб фонарный повесить. Самое первое с чего начал, это распознавание цифр, тут конечно удивить нечем, цифры уже давно неплохо распознаются сетями, но при этом постоянно возникает потребность в новых приложениях, которые должны что-то распознавать: номера домов, номера автомобилей, номера вагонов и т.д. Все бы хорошо, но задача распознавания цифр является лишь частью более общих задач.
Читать дальше →
Total votes 35: ↑30 and ↓5 +25
Views 44K
Comments 24

Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей

Smart Engines corporate blog Programming *Algorithms *Image processing *Machine learning *
Сегментация строки на символы является одним из важнейших этапов в процессе оптического распознавания символов (OCR), в частности, при оптическом распознавании изображений документов. Сегментацией строки называется декомпозиция изображения, содержащего последовательность символов, на фрагменты, содержащие отдельные символы.

Важность сегментации обусловлена тем обстоятельством, что в основе большинства современных систем оптического распознавания текста лежат классификаторы (в том числе — нейросетевые) отдельных символов, а не слов или фрагментов текста. В таких системах ошибки неправильного проставления разрезов между символами как правило являются причиной львиной доли ошибок конечного распознавания.

Поиск границ символов усложняется из-за артефактов печати и оцифровки (сканирования) документа, приводящим к “рассыпанию” и “склеиванию” символов. В случае использования стационарных или мобильных малоразмерных видеокамер спектр артефактов оцифровки существенно пополняется: возможны дефокусировка и смазывание, проективные искажения, деформирование и изгибы документа. При съемке камерой в естественных сценах на изображениях часто возникают паразитные перепады яркости (тени, отражения), а также цветовые искажения и цифровой шум в результате низкой освещенности. На рисунке ниже показаны примеры сложных случаев при сегментации полей паспорта РФ.





В этой статье мы расскажем о методе сегментации символов текстовых строк документов, разработанном нами в Smart Engines, основанный на обучении сверточных и рекуррентных нейронных сетей. Основным рассматриваемым в работе документом является паспорт РФ.
Читать дальше →
Total votes 41: ↑40 and ↓1 +39
Views 20K
Comments 6

Открытая трансляция из главного зала SmartData 2017: речь не про решения — речь про эволюцию

JUG Ru Group corporate blog Big Data *Machine learning *Hadoop *


Как мы уже неоднократно сообщали ранее, в этом году компания JUG.ru Group решила заглянуть в будущее и разобраться, какая необходимость двум серым ящикам взаимодействовать друг с другом впустить в наш мир дозу сакральных знаний по Big Data и машинному обучению — мы сделали конференцию SmartData 2017, которая пройдёт в Питере 21 октября.

Зачем мы собираем конференцию по Big Data и машинному обучению? Потому что не можем не собрать. И чтобы обратить в наше братство как можно большее количество разработчиков, мы традиционно открываем бесплатную онлайн-трансляцию из первого зала конференции.

Итак, бесплатная онлайн-трансляция из главного зала SmartData 2017 начнётся 21 октября 2017 года в 9:30 утра по московскому времени. Только вы, мы и будущее. В этот раз трансляция будет доступна в 2k — доставайте ваши 4k мониторы!



Ссылка на онлайн-трансляцию первого трека конференции SmartData 2017 и краткое описание докладов — под катом.
Читать дальше →
Total votes 24: ↑23 and ↓1 +22
Views 6.5K
Comments 0

Можно ли запихнуть распознавание номеров в любой тамагочи?

Recognitor corporate blog Algorithms *Image processing *Machine learning *
Про распознавание номеров мы рассказываем на Хабре давным давно. Надеюсь даже интересно. Похоже настало время рассказать как это применяется, зачем это вообще нужно, куда это можно запихнуть. А самое главное — как это изменяется в последние годы с приходом новых алгоритмов машинного зрения.


Total votes 24: ↑24 and ↓0 +24
Views 17K
Comments 34

Итоги развития компьютерного зрения за один год

Working with video *Algorithms *Image processing *Machine learning *
Translation
Часть первая. Классификация/локализация, обнаружение объектов и слежение за объектом

Этот фрагмент взят из недавней публикации, которую составила наша научно-исследовательская группа в области компьютерного зрения. В ближайшие месяцы мы опубликуем работы на разные темы исследований в области Искусственного Интеллекта  —  о его экономических, технологических и социальных приложениях — с целью предоставить образовательные ресурсы для тех, кто желает больше узнать об этой удивительной технологии и её текущем состоянии. Наш проект надеется внести свой вклад в растущую массу работ, которые обеспечивают всех исследователей информацией о самых современных разработках ИИ.

Введение


Компьютерным зрением обычно называют научную дисциплину, которая даёт машинам способность видеть, или более красочно, позволяя машинам визуально анализировать своё окружение и стимулы в нём. Этот процесс обычно включает в себя оценку одного или нескольких изображений или видео. Британская ассоциация машинного зрения (BMVA) определяет компьютерное зрение как «автоматическое извлечение, анализ и понимание полезной информации из изображения или их последовательности».

Термин понимание интересно выделяется на фоне механического определения зрения — и демонстрирует одновременно и значимость, и сложность области компьютерного зрения. Истинное понимание нашего окружения достигается не только через визуальное представление. На самом деле визуальные сигналы проходят через оптический нерв в первичную зрительную кору и осмысливаются мозгом в сильно стилизованном смысле. Интерпретация этой сенсорной информации охватывает почти всю совокупность наших естественных встроенных программ и субъективного опыта, то есть как эволюция запрограммировала нас на выживание и что мы узнали о мире в течение жизни.
Читать дальше →
Total votes 23: ↑21 and ↓2 +19
Views 27K
Comments 14

Китайские ученые научили нейросеть распознавать преступников по фотографиям

Popular science Artificial Intelligence
Вскоре после изобретения фотографии некоторые криминалисты стали замечать схожие черты в фотокарточках преступников, сделанных после ареста. Если верить их словам, преступников объединяют общие черты лица, по которым их можно было бы отнести к правонарушителям. Современные ученые попытались доказать эту теорию с помощью возможностей искусственного интеллекта.

imageЯрым сторонником антропологической теории был известный итальянский криминалист Чезаре Ломброзо. Он считал, что преступники были в большей степени, чем законопослушные граждане, похожи на человекообразных обезьян. Он был убежден, что можно определить обезьяньи черты: скошенный лоб, специфическое строение ушных раковин, различные асимметрии лица и длинные руки. Чтобы доказать свою точку зрения, он провел много измерений, хотя и не делал статистический анализ этих данных.

Это упущение в конечном итоге развалило его теорию. Английский криминалист Чарльз Горинг опроверг взгляды Ломброзо. Он проанализировал всю информацию, связанную с физическими отклонениями преступников и законопослушных граждан, и не обнаружил никакой статистической закономерности.
Читать дальше →
Total votes 28: ↑24 and ↓4 +20
Views 18K
Comments 68

Нейросеть научилась определять возраст мозга по МРТ

Artificial Intelligence Health
image

С возрастом когнитивные способности человека снижаются. Нейробиологам давно известно, что это снижение коррелирует с физическими изменениями в головном мозге. Увидеть первые признаки старения или даже определить возраст мозга можно с помощью МРТ, а разница между возрастом мозга и хронологическим возрастом человека помогает выявить нейродегенеративные заболевания на начальных стадиях.

Такой анализ зачастую является очень долгим, поскольку данные МРТ нужно детально обработать, прежде чем запустить автоматизированные процессы распознавания старения: удалить с изображения кости черепа, разделить серое и белое вещество и другие ткани, а также удалить артефакты изображения, включая различные способы сглаживания изображения. Вся обработка может занять более 24 часов, и это препятствие для врачей, надеющихся принимать во внимание возраст головного мозга пациента в процессе клинической диагностики. Ученые из Королевского колледжа в Лондоне нашли способ ускорить этот процесс.
Читать дальше →
Total votes 12: ↑11 and ↓1 +10
Views 7.7K
Comments 5

Фотографии из грубых набросков: как именно работает нейросеть NVIDIA GauGAN

ITSumma corporate blog Image processing *Machine learning *The future is here
Translation
В прошлом месяце на NVIDIA GTC 2019 компания NVIDIA представила новое приложение, которое превращает нарисованные пользователем простые цветные шарики в великолепные фотореалистичные изображения.


Приложение построено на технологии генеративно-состязательных сетей (GAN), в основе которой лежит глубинное обучение. Сама NVIDIA называет его GauGAN — это каламбур-отсылка к художнику Полу Гогену. В основе функциональности GauGAN лежит новый алгоритм SPADE.

В этой статье я объясню, как работает этот инженерный шедевр. И чтобы привлечь как можно больше заинтересованных читателей, я постараюсь дать детализированное описание того, как работают свёрточные нейронные сети. Поскольку SPADE — это генеративно-состязательная сеть, я расскажу подробнее и о них. Но если вы уже знакомы с эти термином, вы можете сразу перейти к разделу «Image-to-image трансляция».

Генерация изображений


Давайте начнем разбираться: в большинстве современных приложений глубинного обучения используется нейронный дискриминантный тип (дискриминатор), а SPADE — это генеративная нейронная сеть (генератор).
Total votes 54: ↑52 and ↓2 +50
Views 29K
Comments 5

Конкурс World & AI Data Challenge: начинаем решать задачу распознавания шрифта Брайля

Microsoft corporate blog Machine learning *Artificial Intelligence

Технологии искусственного интеллекта и анализа данных всё стремительнее входят в нашу жизнь, они могут дать еще один шанс решению действительно важных для людей социальных задач, которые ранее не были реализованы. С этой целью центр цифрового развития АСИ организовал конкурс World AI & Data Challenge, цель которого — структурировать процесс поиска социальных задач и их решений. В феврале 2020 года команда центра цифрового развития АСИ позвала меня войти в состав экспертов этого конкурса. В этой заметке я немного расскажу о самом конкурсе, а также о том, как можно начать решать одну из интересных задач этого конкурса — распознавание шрифта Брайля. Поучаствовать в решении этой и других задач конкурса вы можете до 31 августа 2020 г.


Читать дальше →
Total votes 10: ↑10 and ↓0 +10
Views 2K
Comments 5

Рецепт обучения нейросетей

Python *Machine learning *Artificial Intelligence Data Engineering *TensorFlow *
Sandbox
Translation

Несколько недель назад я опубликовал твит на тему «частые ошибки с нейросетями», перечислив несколько общих ошибок принадлежащих к обучению нейронных сетей. Твит получил несколько больше взаимодействий чем я ожидал (включая целый вебинар :)). Действительно, многие заметили большой разрыв между тем «вот как работает слой свертки» и «наша сверточная сеть достигает результатов произведения искусства».

Поэтому я подумал, что будет весело смести пыль со своего блога, чтобы раскрыть свой твит в более объемном формате, которого и заслуживает эта тема. Однако, вместо того чтобы углубиться в перечень еще большего количества частых ошибок или их конкретизацию, я хотел бы копнуть глубже и поговорить о том, как обойти эти ошибки целиком (или исправить их очень быстро).

Читать далее
Total votes 15: ↑14 and ↓1 +13
Views 7.5K
Comments 6