Pull to refresh
  • by relevance
  • by date
  • by rating

Правильные многогранники. Часть 1. Трёхмерие

Mathematics *
Sandbox
Tutorial

Введение. Постановка вопроса.


В школьной программе, к сожалению, сферическую геометрию и геометрию Лобачевского не изучают. Тем временем, их изучение совместно с Евклидовой геометрией, позволяет глубже понять происходящее с объектами. Например, понять связь правильных многогранников с разбиениями сферы, разбиениями плоскости Евклида и разбиениями плоскости Лобачевского.
Знания геометрии пространств постоянной кривизны помогает подниматься над трёхмерием и выявлять многогранники в пространствах размерности 4 и выше. Вопросы нахождения многогранников, нахождения разбиений пространств постоянной кривизны, вывода формулы двугранного угла правильного многогранника в n-мерном пространстве — так тесно переплетены, что выносить всё это в название статьи оказалось проблематично. Пусть в центре внимания будут, всем понятные, правильные многогранники, хотя они не только результат всех выводов, но и, одновременно, инструмент для постижения пространств высших размерностей и равномерно искривлённых пространств.

Для тех кто не знает (забыл) сообщаю (напоминаю), что в привычном нам трёхмерном Евклидовом пространстве всего пять правильных многогранников:
1. Тетраэдр: 2. Куб: 3. Октаэдр: 4. Додекаэдр: 5. Икосаэдр:





Читать дальше →
Total votes 88: ↑85 and ↓3 +82
Views 86K
Comments 46

Правильные многогранники. Часть 2. Четырёхмерие

Mathematics *
Tutorial
Предыдущая публикация: Правильные многогранники. Часть 1. Трёхмерие

Вступление

image
Вижу, что на Хабре люди серьёзные собрались. Статью про трёхмерие на счёт «раз» разобрали. Однако пространствами постоянной кривизны никого не удивишь в наше время. Тем не менее всегда находятся желающие заглянуть выше, в четырёхмерие. Ну что ж, именно с такими любознательными коллегами мы продолжаем разговор и переходим на следующий уровень по размерности.

Моя задача не просто рассказать про разбиения пространств постоянной кривизны любой размерности на правильные многогранники, а сделать это так, чтобы материал поняли даже вчерашние школьники, окончившие 11 классов. Я люблю статьи на Хабре именно за их доходчивость, понятность, простоту, не смотря на сложность материала, и в таком же качестве стараюсь подавать сведения в публикациях. В ВУЗах и в отечественных публикациях предлагаемый материал возможно рассматривается, но, как мне кажется, не в таком виде. Думаю, что информация будет полезна и для студентов. В иностранной литературе данный материал есть, соответственно не на русском языке, в сильно сжатом виде и с использованием высшей математики. Тут я всё «разжёвываю» для школьников, без высшей математики, фактически на одной геометрической интуиции. Мы увидим в следующей статье, как будет сделан переход от 4D к 5D с помощью геометрии, наглядно, без высшей алгебры. Это будет самый сложный шаг, но кто его поймёт, тот поймёт и все остальные размерности от 6 и выше. Не уверен, что мне удалось всё основательно «разжевать», поэтому, если будут дополнительные вопросы — задавайте, это поможет мне улучшить статью.

В данной публикации идея выкладок полностью та же, что и в предыдущей статье, только на одну размерность выше
Читать дальше →
Total votes 34: ↑33 and ↓1 +32
Views 24K
Comments 29

Мир трехмерной гиперсферы. Геодезическая трассировка лучей в замкнутой вселенной со сферической геометрией

JavaScript *Mathematics *WebGL *Popular science Astronomy
Хотели посмотреть на мир глазами существа живущего в компактной замкнутой вселенной со сферической геометрией? Посмотреть на мир без ночи? Мир, где на небе виден другой полюс планеты? Мир, где нет разницы между солнечным и лунным затмением? Добро пожаловать под кат!


Читать дальше →
Total votes 71: ↑70 and ↓1 +69
Views 21K
Comments 74

Топология и комплексный анализ для ничего не подозревающего разработчика игр: сжатие единичных 3D-векторов

Client optimization *Working with 3D-graphics *Game development *Mathematics *
Translation
image

Как вы уже могли понять из моих предыдущих статей, мне нравится использовать разработку игр как оправдание для демонстрации сложной математики, для которой в противном случае у большинства людей не было бы применения. И эта статья не исключение! Я хочу показать очень крутую технику, соответствующую любопытным для меня пунктам:

  • процесс достаточно нагляден
  • он намного быстрее, чем обычная техника, выполняющая ту же задачу
  • он использует очень необычное свойство представления вещественных чисел в формате с плавающей запятой, что подразумевает, что...
  • он не работает в классическом анализе. Чтобы этот алгоритм работал в теории, нужно попасть в удивительный мир неклассической математики! И если уж это не разбудило ваше любопытство, то я уж и не знаю, что ещё поделать.

Эта статья довольно длинная и теоретическая, потому что она требует глубоко изучить объяснения, так что не торопитесь и перечитывайте те части, которые показались вам не столь очевидными с первого раза.

Немного о контексте (GPU)


Один из важных аспектов, на который стоит обращать внимание в разработке игр, а в более широком смысле — и в любой области с активным использованием графики — это пропускная способность GPU. Центральный процессор и GPU — отдельные физические устройства, и для обмена данными им требуется синхронизация. Если вы уже занимались параллельной обработкой, то знаете, что когда двум устройствам нужно синхронизироваться, это означает потерю значительного количества времени. Взаимодействие CPU-GPU в этом плане ничем не отличается, поэтому мы стремимся минимизировать передачу данных, как в количестве операций, так и в объёме передаваемых данных.
Читать дальше →
Total votes 31: ↑31 and ↓0 +31
Views 8.5K
Comments 12