Pull to refresh

Обзор NoSQL систем

NoSQL *
Беспрецедентные объемы данных заставляют разработчиков и бизнес приглядываться к альтернативам реляционных баз данных, используемым вот уже более тридцати лет. В совокупности все эти технологии известны как «NoSQL базы данных».


Основной проблемой является то, что реляционные базы данных не могут справляться с нагрузками актуальными в наше время (мы говорим о high-load проектах). Есть три конкретные проблемных области:
  • горизонтальное масштабирование при больших объемах данных, например как в случае Digg (3 терабайта для зеленых значков, отображаемых, если ваш друг сделал dugg на статье) или Facebook (50 терабайт для поиска по входящим сообщениям) или eBay (2 петабайта в целом)
  • производительность каждого отдельного сервера
  • не гибкий дизайн логической структуры.
Читать дальше →
Total votes 101: ↑98 and ↓3 +95
Views 53K
Comments 67

HBase + Thrift + PHP

PHP *
Sandbox
Видимо так сложилось исторически, но на хабре не очень много статей о HBase, Thrift и тем более о том как их связать для работы с PHP клиентом. Давайте же ликвидируем этот пробел и пройдемся от инсталяции HBase до получения PHP клиентом примитивных данных из HBase.
Читать дальше →
Total votes 38: ↑35 and ↓3 +32
Views 10K
Comments 18

Основные тезисы конференции HighLoad++ 2011

Self Promo
imageВ октябре 2011 года в Москве проходила ежегодная конференция разработчиков высоконагруженных проектов HighLoad++.
Решил поделиться с читателями основными тезисами с конференции. Поскольку вся информация открыта и доступна на странице конференции, решил что собрать все тезисы вместе будет не такой уж и плохой затеей. Сразу отмечу, что в отчёте не содержится детальной информации о каждом докладе — затронуты лишь ключевые моменты.
Итак, о чём говорилось на HighLoad++ 2011.
Читать дальше →
Total votes 32: ↑30 and ↓2 +28
Views 4K
Comments 2

HBase, загрузка больших массивов данных через bulk load

Java *Big Data *Hadoop *
Привет коллеги.
Хочу поделиться своим опытом использования HBase, а именно рассказать про bulk loading. Это еще один метод загрузки данных. Он принципиально отличается от обычного подхода (записи в таблицу через клиента). Есть мнение, что с помощью bulk load можно очень быстро загружать огромные массивы данных. Именно в этом я решил разобраться.
Читать дальше →
Total votes 10: ↑9 and ↓1 +8
Views 10K
Comments 5

DMP часть 1. Микросегментирование аудитории с помощью ключевых слов

Targetix corporate blog High performance *Website development *Big Data *
Авторы статьи: Данила Перепечин DanilaPerepechin, Дмитрий Чеклов dcheklov.

Здравствуйте.
Data management platform (DMP) — это наша любимая тема во всей истории про онлайн рекламу. RTB is all about the data.
В продолжение цикла рассказов о технологическом стеке Targetix (SSP, DSP), сегодня я опишу один из инструментов, входящих
в DMP — Keyword Builder.


Читать дальше →
Total votes 12: ↑10 and ↓2 +8
Views 16K
Comments 20

Big Data — первый опыт ED IB

AT Consulting corporate blog Big Data *Hadoop *
Всем привет! Сегодня мы хотим рассказать про наше знакомство с Big Data, которое началось в 2012 году, когда рынок ещё не накрыла волна популярности темы больших данных.



К тому времени у нас уже накопилась экспертиза в области построения хранилищ данных. Мы рассматривали различные пути улучшения стандартных архитектур ХД, поскольку заказчик хотел обрабатывать большие объёмы данных за короткое время и при ограниченном бюджете. Мы понимали, что большие объёмы данных для стандартного хранилища прекрасно обрабатываются на MPP-платформах, но де-факто это дорого. Значит, нам нужна недорогая распределенная система. Ей оказался Hadoop. Он нуждается в минимальных начальных вложениях, а первые результаты можно получить очень быстро. В дальнейшей перспективе – горизонтальное, практически линейное масштабирование, открытая платформа и много интересных дополнительных функций: например, NoSQL, быстрый поиск по данным, подобие SQL-языка доступа к данным.
Читать дальше →
Total votes 29: ↑19 and ↓10 +9
Views 18K
Comments 18

Big Data от А до Я. Часть 4: Hbase

DCA (Data-Centric Alliance) corporate blog Big Data *
Tutorial
Привет, Хабр! Наконец-то долгожданная четвёртая статья нашего цикла о больших данных. В этой статье мы поговорим про такой замечательный инструмент как Hbase, который в последнее время завоевал большую популярность: например Facebook использует его в качестве основы своей системы обмена сообщений, а мы в data-centric alliance используем hbase в качестве основного хранилища сырых данных для нашей платформы управления данными Facetz.DCA

В статье будет рассказано про концепцию Big Table и её свободную реализацию, особенности работы и отличие как от классических реляционных баз данных (таких как MySQL и Oracle), так и key-value хранилищ, таких как Redis, Aerospike и memcached.
Заинтересовало? Добро пожаловать под кат.


Читать дальше →
Total votes 24: ↑23 and ↓1 +22
Views 89K
Comments 21

Frontera: архитектура фреймворка для обхода веба и текущие проблемы

High performance *System Analysis and Design *Big Data *
Sandbox
Всем привет, я занимаюсь разработкой Frontera, первым в истории фреймворком для масштабного обхода интернета сделанным на Python-е, с открытым исходным кодом. С помощью Фронтеры можно легко сделать робота который сможет выкачивать контент со скоростью тысяч страниц в секунду, при этом следуя вашей стратегии обхода и используя обычную реляционную БД или KV-хранилище для хранения базы ссылок и очереди.

Разработка Фронтеры финансируется компанией Scrapinghub Ltd., имеет полностью открытый исходный код (находится на GitHub, BSD 3-clause лицензия) и модульную архитектуру. Мы стараемся чтобы и процесс разработки тоже был максимально прозрачным и открытым.

В этой статье я собираюсь рассказать о проблемах с которыми мы столкнулись при разработке Фронтеры и эксплуатации роботов на ее основе.
Читать дальше →
Total votes 13: ↑13 and ↓0 +13
Views 6.6K
Comments 34

Технологии больших данных в работе с бактериями микробиоты. Лекция в Яндексе

Яндекс corporate blog Research and forecasts in IT *
Мы часто говорим о задачах, которые лежат на стыке той или иной классической науки и анализа данных. В сегодняшнем докладе эта идеология представлена воочию — большую часть доклада читает учёный, а о конкретных методах и инструментах рассказывает программист.


Под катом — расшифровка и основная часть слайдов.

Total votes 42: ↑42 and ↓0 +42
Views 6.8K
Comments 2

Спецпроекты в Сбербанк-Технологиях: как в банках готовят Hadoop, Spark, Kafka и прочую Big Data

JUG Ru Group corporate blog Java *Big Data *Machine learning *Hadoop *
Все мы любим посмеяться над дремучим legacy на Java, которое якобы живёт в банках. После прочтения этой статьи у вас появится понимание другой грани этой истории. Оказывается, конкретно в Сбербанк-Технологиях есть целые большие отделы, занимающиеся прорывными технологиями и направлениями, включая Big Data и Machine Learning. Более того, скоро мы можем оказаться в мире, где Machine Learning встроен чуть ли не в каждую кофеварку. К добру или к худу, но Internet of Things, следящий за нами тысячью глаз из каждого банкомата, — куда более актуальное прочтение этой старой шутки.

Как вы, наверное, заметили, я пишу на Хабре про виртуальные машины, внутренности OpenJDK, JVM и другую системную разработку. Почему эта статья — о банковском софте? Потому что это актуально как никогда. Вот представьте, вы такой весь в белом, дважды Data Scientist и четырежды важный гуру JIT-компиляции. Что дальше? Кому всё это может быть нужно прямо здесь и сейчас? Часто слышу рассуждения на тему: «Вот сейчас ты ковыряешься в своей любимой Java, а завтра никто тебя на работу не возьмёт». Это очень забавное и опасное заблуждение. Благодаря таким товарищам, о которых пойдёт речь в этой статье, работа у нас будет всегда.

Конечно, на слово мне никто верить не должен, поэтому специально для Хабра я сорвался на самолёт в Москву, чтобы пообщаться с начальником отдела разработки спецпроектов в Сбербанк-Технологиях. Вадим Сурпин потратил на меня чуть больше часа, а в этом интервью будут только самые важные мысли из нашего разговора. Кроме того, удалось уговорить Вадима подать заявку на участие в нашей конференции JBreak. Более того, Вадим — первый человек, который показался мне достойным инвайта на Хабр: vadsu (инвайт был честно заработан статьей про хакинг ChromeDriver).

Читать дальше →
Total votes 46: ↑40 and ↓6 +34
Views 30K
Comments 24

Теория и практика использования HBase

Сбер corporate blog NoSQL *Big Data *Data storages *Hadoop *
Добрый день! Меня зовут Данил Липовой, наша команда в Сбертехе начала использовать HBase в качестве хранилища оперативных данных. В ходе его изучения накопился опыт, который захотелось систематизировать и описать (надеемся, что многим будет полезно). Все приведенные ниже эксперименты проводились с версиями HBase 1.2.0-cdh5.14.2 и 2.0.0-cdh6.0.0-beta1.

  1. Общая архитектура
  2. Запись данных в HBASE
  3. Чтение данных из HBASE
  4. Кэширование данных
  5. Пакетная обработка данных MultiGet/MultiPut
  6. Стратегия разбивки таблиц на регионы (спилитинг)
  7. Отказоустойчивость, компактификация и локальность данных
  8. Настройки и производительность
  9. Нагрузочное тестирование
  10. Выводы
Читать дальше →
Total votes 14: ↑13 and ↓1 +12
Views 10K
Comments 11

Сегментируем 600 миллионов пользователей в режиме реального времени каждый день

JUG Ru Group corporate blog Big Data *
Каждый день пользователи совершают миллионы действий в интернете. Проекту FACETz DMP необходимо структурировать эти данные и проводить сегментацию для выявления предпочтений пользователей. В материале мы расскажем о том, как команда сегментировала аудиторию в 600 миллионов человек, обрабатывала 5 миллиардов событий ежедневно и работала со статистикой, используя Kafka и HBase.



В основе материала — расшифровка доклада Артема Маринова, специалиста по большим данным в компании Directual, c конференции SmartData 2017.
Читать дальше →
Total votes 36: ↑34 and ↓2 +32
Views 4.8K
Comments 12

Как мы строим систему обработки, хранения и анализа данных в СИБУРе

Цифровой СИБУР corporate blog Data storage *Machine learning *Hadoop *
В начале 2018 года у нас активно пошел процесс цифровизации производства и процессов в компании. В секторе нефтехимии это не просто модный тренд, а новый эволюционный шаг в сторону повышения эффективности и конкурентоспособности. Учитывая специфику бизнеса, который и без всякой цифровизации показывает неплохие экономические результаты, перед «цифровизаторами» стоит непростая задача: всё-таки менять устоявшиеся процессы в компании — довольно кропотливая работа.

Наша цифровизация началась с создания двух центров и соответствующих им функциональных блоков.

Это «Функция цифровых технологий», в которую включены все продуктовые направления: цифровизация процессов, IIoT и продвинутая аналитика, а также центр управления данными, ставший самостоятельным направлением.



И вот как раз главная задача дата-офиса заключается в том, чтобы полноценно внедрить культуру принятия решений, основанных на данных (да, да, data-driven decision), а также в принципе упорядочить всё, что касается работы с данными: аналитика, обработка, хранение и отчетность. Особенность в том, что все наши цифровые инструменты должны будут не только активно использовать собственные данные, то есть те, которые генерируют сами (например, мобильные обходы, или датчики IIoT), но и внешние данные, с четким пониманием, где и зачем их нужно использовать.

Меня зовут Артем Данилов, я руководитель направления «Инфраструктура и технологии» в СИБУРе, в этом посте я расскажу, как и на чем мы строим большую систему обработки и хранения данных для всего СИБУРа. Для начала поговорим только о верхнеуровневой архитектуре и о том, как можно стать частью нашей команды.
Total votes 18: ↑17 and ↓1 +16
Views 18K
Comments 29

Битва двух якодзун, или Cassandra vs HBase. Опыт команды Сбербанка

Сбер corporate blog High performance *Big Data *Data storages *Hadoop *
Это даже не шутка, похоже, что именно эта картинка наиболее точно отражает суть этих БД, и в конце будет понятно почему:



Согласно DB-Engines Ranking, две самых популярных NoSQL колоночных базы — это Cassandra (далее CS) и HBase (HB).



Волею судеб наша команда управления загрузки данных в Сбербанке уже давно и плотно работает с HB. За это время мы достаточно хорошо изучили её сильные и слабые стороны и научились её готовить. Однако наличие альтернативы в виде CS все время заставляло немного терзать себя сомнениями: а правильный ли выбор мы сделали? Тем более, что результаты сравнения, выполненного DataStax, говорили, что CS легко побеждает HB практически с разгромным счетом. С другой стороны, DataStax — заинтересованное лицо, и верить на слово тут не стоит. Также смущало достаточно малое количество информации об условиях тестирования, поэтому мы решили выяснить самостоятельно, кто же является королем BigData NoSql, и полученные результаты оказались весьма интересны.
Читать дальше →
Total votes 19: ↑17 and ↓2 +15
Views 11K
Comments 135

Особенности проектирования модели данных для NoSQL

System Analysis and Design *SQL *NoSQL *Data storage *Data storages *
Sandbox

Введение


«Нужно бежать со всех ног, чтобы только оставаться на месте,
а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»
(с) Алиса в стране чудес


Некоторое время назад меня попросили прочитать лекцию аналитикам нашей компании на тему проектирования моделей данных, ведь сидя долгое время на проектах (порою по нескольку лет) мы упускаем из виду происходящее вокруг в мире ИТ-технологий. В нашей компании (уж так получилось) на многих проектах не используются NoSQL-базы данных (по крайней мере пока), поэтому в своей лекции я отдельно уделил им некоторое внимание на примере HBase и постарался ориентировать изложение материала на тех, кто с ними никогда не работал. В частности, я иллюстрировал некоторые особенности проектирования модели данных на примере, который несколько лет назад прочитал в статье «Introduction to HB ase Schema Design» by Amandeep Khurana. Разбирая примеры, я сравнивал между собой несколько вариантов решения одной и той же задачи, чтобы лучше донести до слушателей основные идеи.


Недавно, «от нечего делать», я задался вопросом (длинные майские выходные в режиме карантина к этому особенно располагают), насколько теоретические выкладки будут соответствовать практике? Собственно, так и родилась идея этой статьи. Разработчик, который не первый день работает с NoSQL, возможно и не почерпнет из нее что-то новое (и поэтому может сразу промотать полстатьи). Но для аналитиков, которые еще не работали плотно с NoSQL, полагаю, она будет полезна для получения базовых представлений об особенностях проектирования моделей данных для HBase.

Читать дальше →
Total votes 17: ↑17 and ↓0 +17
Views 7.2K
Comments 21

Как увеличить скорость чтения из HBase до 3 раз и с HDFS до 5 раз

Сбер corporate blog High performance *Big Data *Data storages *Hadoop *
Высокая производительность — одно из ключевых требований при работе с большими данными. Мы в управлении загрузки данных в Сбере занимаемся прокачкой практически всех транзакций в наше Облако Данных на базе Hadoop и поэтому имеем дело с действительно большими потоками информации. Естественно, что мы все время ищем способы повысить производительность, и теперь хотим рассказать, как удалось пропатчить RegionServer HBase и HDFS-клиент, благодаря чему удалось значительно увеличить скорость операции чтения.

Читать дальше →
Total votes 15: ↑14 and ↓1 +13
Views 3.2K
Comments 9

Тестирование производительности HBase с помощью YCSB

Cloudera corporate blog NoSQL *Database Administration *Apache *Data storages *
Translation

Тестирование производительности HBase с помощью YCSB

При запуске любого теста производительности (инструмента по бенчмаркингу) на кластере критично всегда то, какой именно будет использоваться набор данных, и здесь мы покажем, почему при запуске теста производительности HBase на кластере важно выбрать «хорошо соответствующий по объему» набор данных.

Читать далее
Total votes 1: ↑1 and ↓0 +1
Views 418
Comments 0

Новая схватка двух якодзун или Scylla vs Aerospike (+ HBase для массовки)

High performance *Big Data *Data storage *Hadoop *
В прошлый раз обсуждение битвы тяжеловесов Cassandra VS HBase вызвало весьма бурную дискуссию, в ходе которой была много раз упомянута Scylla — которая позиционируется как более быстрый аналог Cassandra (далее CS). Также меня заинтересовал весьма любопытный Aerospike (далее AS), который в своих тестах предсказуемо побеждает CS с разгромным счетом.

image

По удивительному совпадению Scylla (далее SC) также легко бьет CS, о чем гордо сообщает прямо на своей заглавной странице:
Читать дальше →
Total votes 13: ↑12 and ↓1 +11
Views 4.1K
Comments 30

Как устроена Единая биометрическая система

Конференции Олега Бунина (Онтико) corporate blog Команда Госуслуг corporate blog System Analysis and Design *Apache *Hadoop *

Единая биометрическая система (ЕБС) с 2018 года используется для идентификации человека по его биометрическим характеристикам: голосу и лицу.

Чтобы получать услуги по биометрии, пользователю необходимо зарегистрироваться в системе в одном из 13,1 тысяч отделений банков. Там операционист сделает его фотографию, запишет голос и отправит эти данные в систему. А для того чтобы компании могли оказывать по биометрии различные услуги, им необходимо провести интеграцию с ЕБС.

Оператором системы является «Ростелеком», а разработкой занимаемся мы – дочерняя компания РТЛабс .

Меня зовут Сергей Браун, я заместитель директора департамента цифровой идентичности в РТЛабс. Вместе с Артуром Душелюбовым, начальником отдела развития и разработки департамента цифровой идентичности, мы расскажем, как мы создавали платформу для любой биометрии, с какими проблемами встретились и как их решали.

Читать далее
Total votes 37: ↑26 and ↓11 +15
Views 7.5K
Comments 35

Проблема пакетной загрузки данных в HBase и способы решения

GlowByte corporate blog Java *

Проблема пакетной загрузки данных в HBase и способы решения

Статья посвящена проблеме быстрой загрузки большого объема данных в HBase, когда стандартные методы вставки в таблицу не дают должной производительности. Опытом в ее решении и возникших в процессе трудностях и хотелось бы поделиться в рамках данной статьи.

Читать далее
Total votes 8: ↑8 and ↓0 +8
Views 1.2K
Comments 0
1