Pull to refresh

Система непересекающихся множеств и её применения

Algorithms *
Добрый день, Хабрахабр. Это еще один пост в рамках моей программы по обогащению базы данных крупнейшего IT-ресурса информацией по алгоритмам и структурам данных. Как показывает практика, этой информации многим не хватает, а необходимость встречается в самых разнообразных сферах программистской жизни.
Я продолжаю преимущественно выбирать те алгоритмы/структуры, которые легко понимаются и для которых не требуется много кода — а вот практическое значение сложно недооценить. В прошлый раз это было декартово дерево. В этот раз — система непересекающихся множеств. Она же известна под названиями disjoint set union (DSU) или Union-Find.

Условие


Поставим перед собой следующую задачу. Пускай мы оперируем элементами N видов (для простоты, здесь и далее — числами от 0 до N-1). Некоторые группы чисел объединены в множества. Также мы можем добавить в структуру новый элемент, он тем самым образует множество размера 1 из самого себя. И наконец, периодически некоторые два множества нам потребуется сливать в одно.

Формализируем задачу: создать быструю структуру, которая поддерживает следующие операции:

MakeSet(X) — внести в структуру новый элемент X, создать для него множество размера 1 из самого себя.
Find(X) — возвратить идентификатор множества, которому принадлежит элемент X. В качестве идентификатора мы будем выбирать один элемент из этого множества — представителя множества. Гарантируется, что для одного и того же множества представитель будет возвращаться один и тот же, иначе невозможно будет работать со структурой: не будет корректной даже проверка принадлежности двух элементов одному множеству if (Find(X) == Find(Y)).
Unite(X, Y) — объединить два множества, в которых лежат элементы X и Y, в одно новое.

На рисунке я продемонстрирую работу такой гипотетической структуры.


Как такое сделать и зачем оно нужно
Total votes 114: ↑109 and ↓5 +104
Views 55K
Comments 29

Непересекающиеся множества и загадочная функция Аккермана

Algorithms *Mathematics *
Tutorial
Речь пойдёт о простой структуре данных — системе непересекающихся множеств. Вкратце: даны непересекающиеся множества (например, компоненты связности графа) и по двум элементам x и y можно: 1) узнать, находятся ли x и y в одном множестве; 2) объединить множества, содержащие x и y. Сама структура очень проста в реализации и описывалась много раз в различных местах (например, есть хорошая статья на хабре и ещё кое-где). Но это один из тех удивительных алгоритмов, написать который ничего не стоит, а вот разобраться, почему он работает эффективно совсем нелегко. Я постараюсь изложить относительно простое доказательство точной оценки на время работы этой структуры данных, придуманное Зейделем и Шариром в 2005 (оно отличается от того ужаса, который многие могли видеть в других местах). Конечно, сама структура тоже будет описана, а попутно разберёмся причём здесь обратная функция Аккермана, о которой многие знают только, что она оооочень медленно растёт.
Читать дальше →
Total votes 39: ↑39 and ↓0 +39
Views 36K
Comments 4

Разбор задачи с собеседования в Google: синонимичные запросы

Search engines *Entertaining tasks Algorithms *IT career IT-companies
Translation


Это новая статья из разбора задач с собеседований в Google. Когда я там работал, то предлагал кандидатам такие задачи. Потом произошла утечка, и их запретили. Но у медали есть обратная сторона: теперь я могу свободно объяснить решение.
Читать дальше →
Total votes 53: ↑51 and ↓2 +49
Views 53K
Comments 112