Одно из таких средств — это dynaTrace Ajax, скачать который можно здесь.
dynaTrace AJAX — мощный профайлер JS
Одно из таких средств — это dynaTrace Ajax, скачать который можно здесь.
Всем привет. Сегодня мы хотели бы поговорить про выявления аномалий в микросервисной среде. Данный пост является краткой выжимкой нашего 40 минутного доклада, который мы делали на онлайн конференции DevOps Live 2020 и, чтобы не писать лонгрид, мы решили сфокусироваться на обзоре инструментов выявления аномалий в распределении значений метрик для автоматизации мониторинга микросервисов, которые возможно быстро начать использовать любой команде.
Тема детектирования аномалий сейчас очень актуальна, так как с переходом на микросервисы для SRE и DevOps приоритет задач, связанных с преобразованием алертов в осмысленный сигнал, снижением MTTD и упрощением настройки алертов в мониторинге распределенных сред значительно повысился.
I have already written about AIOps and machine learning methods in working with IT incidents, about hybrid umbrella monitoring and various approaches to service management. Now I would like to share a very specific algorithm, how one can quickly get information about functioning conditions of business applications using synthetic monitoring and how to build, on this basis, the health metric of business services at no special cost. The story is based on a real case of implementing the algorithm into the IT system of one of the airlines.
Currently there are many APM systems, such as Appdynamics, Dynatrace, and others, having a UX control module inside that uses synthetic checks. And if the task is to learn about failures quicker than customers, I will tell you why all these APM systems are not needed. Also, nowadays health metrics are a fashionable feature of APM and I will show how you can build them without APM.
Information