В этой небольшой заметке я хочу затронуть тему совместных конфиденциальных вычислений и попробовать кратко изложить суть этих подходов и развеять несколько неоднозначностей, сложившихся в трактовке этого термина в современном информационном поле. Надеюсь получиться 🙂
Начну немного издалека, я в целом интересуюсь темой распределенной обработки данных с сохранением конфиденциальности, в частности активно смотрю на развитие такого направления, как Federated Learning. Часто попадаются статьи и материалы на эту тему, в которых наблюдаю некоторую терминологическую путаницу, тк термины Federated Learning и Confidential Computing часто используют как синонимы, но это не совсем так. Может быть я не совсем прав, но набор методов, для "обучения" (learning) и для "вычислений" вообще-то отличаются и не являются подмножеством друг друга. Поэтому в первую очередь хочу высказаться про мое понимание их фундаментальной разницы:
FL_PyTorch: Optimization Research Simulator for Federated Learning is publicly available on GitHub.
FL_PyTorch is a suite of open-source software written in python that builds on top of one of the most popular research Deep Learning (DL) frameworks PyTorch. We built FL_PyTorch as a research simulator for FL to enable fast development, prototyping, and experimenting with new and existing FL optimization algorithms. Our system supports abstractions that provide researchers with sufficient flexibility to experiment with existing and novel approaches to advance the state-of-the-art. The work is in proceedings of the 2nd International Workshop on Distributed Machine Learning DistributedML 2021. The paper, presentation, and appendix are available in DistributedML’21 Proceedings (https://dl.acm.org/doi/abs/10.1145/3488659.3493775).