Pull to refresh

Счетная палата РФ открывает свои исходные коды

Open source *Python *Programming *Open data *Legislation in IT


Счетная палата выходит на новый уровень прозрачности и первой из российских государственных органов открывает свои исходные коды. Доступными для общественности станут новые проекты контрольного ведомства по автоматизации работы инспекторов и сотрудников.
Читать дальше →
Total votes 20: ↑18 and ↓2 +16
Views 4.8K
Comments 8

Настройка LaTeX-шаблонов для Jupyter notebook

Python *R *
Sandbox
Есть отличный инструмент для обучения/отчётов/написания умных книг про код — Jupyter Notebook. Если отчёт или книга, например, пишутся на кириллице, а нужно быстро сделать из этого PDF с красивыми формулами и тире правильной длины, то сразу обнаруживается проблема: в стандартном шаблоне, который Jupyter использует для конвертации блокнотов в PDF через LaTeX, нет подключения нужных пакетов с нужными параметрами, поэтому LaTeX просто не компилируется и PDF не получить.
Что делать?
Total votes 14: ↑13 and ↓1 +12
Views 23K
Comments 3

16 ядер и 30 Гб под капотом Вашего Jupyter за $0.25 в час

Python *Data Mining *Amazon Web Services *
Tutorial
Если Вам не очень повезло, и на работе нет n-ядерного монстра, которого можно загрузить своими скриптами, то эта статья для Вас. Также если Вы привыкли запускать скрипты на всю ночь (и утром читать, что где-то забыли скобочку, и 6 часов вычислений пропали) — у Вас есть шанс наконец познакомиться с Amazon Web Services.



В этой статье я расскажу, как начать работать с сервисом EC2. По сути это пошаговая инструкция по полуавтоматической аренде спотового инстанса AWS для работы с Jupyter-блокнотами и сборкой библиотек Anaconda. Будет полезно, например, тем, кто в соревнованиях Kaggle все еще пользуется своим игрушечным маком.

Читать дальше →
Total votes 20: ↑19 and ↓1 +18
Views 31K
Comments 39

Обработка данных в iPython notebook для задач SEO

Rambler&Co corporate blog Python *Data Mining *API *VK API *
image

При выполнении аналитических задач SEO, SMM, маркетинга мы столкнулись с непомерно растущим количеством инструментов для обработки данных. Каждый заточен под свои возможности или доступность для пользователя: Excel и VBA, сторонние SEO-инструменты, PHP и MySQL, Python, C, Hive и другие. Разнообразные системы и источники данных добавляют проблем: счетчики, рекламные системы, CRM, инструменты вебмастера Яндекса и Google, соцсети, HDFS. Необходим инструмент, совмещающий в себе простоту настройки и использования, модули для получения, обработки и визуализации данных, а также работы с различными типами источников. Выбор пал на iPython notebook (с недавних пор Jupyter notebook), представляющий собой платформу для работы со скриптами на 40 языках программирования. Широкое распространение платформа получила для научных вычислений, среди специалистов по обработке данных и машинному обучению. К сожалению для автоматизации и обработки данных маркетинговых задач Jupyter notebook используется крайне редко.
Читать дальше →
Total votes 12: ↑12 and ↓0 +12
Views 16K
Comments 3

Немного про кино или как делать интерактивные визуализации в python

Python *Data visualization *


Введение


В этой заметке я хочу рассказать о том, как можно достаточно легко строить интерактивные графики в Jupyter Notebook'e с помощью библиотеки plotly. Более того, для их построения не нужно поднимать свой сервер и писать код на javascript. Еще один большой плюс предлагаемого подхода — визуализации будут работать и в NBViewer'e, т.е. можно будет легко поделиться своими результатами с коллегами. Вот, например, мой код для этой заметки.


Для примеров я взяла скаченные в апреле данные о фильмах (год выпуска, оценки на КиноПоиске и IMDb, жанры и т.д.). Я выгрузила данные по всем фильмам, у которых было хотя бы 100 оценок — всего 36417 фильмов. Про то, как скачать и распарсить данные КиноПоиска, я рассказывала в предыдущем посте.


Читать дальше →
Total votes 55: ↑54 and ↓1 +53
Views 61K
Comments 8

Особенности Jupyter Notebook, о которых вы (может быть) не слышали

Wunder Fund corporate blog Python *Programming *
Translation
Jupyter Notebook – это крайне удобный инструмент для создания красивых аналитических отчетов, так как он позволяет хранить вместе код, изображения, комментарии, формулы и графики:



Ниже мы расскажем о некоторых фишках, которые делают Jupyter очень крутым. О них можно прочитать и в других местах, но если специально не задаваться этим вопросом, то никогда и не прочитаешь.
Читать дальше →
Total votes 49: ↑45 and ↓4 +41
Views 310K
Comments 13

Быстрый Data Mining или сравнение производительности C# vs Python (pandas-numpy-skilearn)

High performance *Python *Data Mining *C# *Big Data *
Всем привет! Разбираясь со Spark Apache, столкнулся с тем, что после достаточно небольшого усложнения алгоритмов подготовки данных расчеты стали выполняться крайне медленно. Поэтому захотелось реализовать что-нибудь на C# и сравнить производительность с аналогичным по классу решением на стеке python (pandas-numpy-skilearn). Аналогичным, потому что они выполняются на локальной машине. Подготовка данных на C# осуществлялась встроенными средствами (linq), расчет линейной регрессии библиотекой extremeoptimization.

В качестве тестовой использовалась задача «B. Предсказание трат клиентов» с ноябрьского соревнования Sberbank Data Science Journey.

Сразу стоит подчеркнуть, что в данной статье описан исключительно аспект сравнения производительности платформ, а не качества модели и предсказаний.

Итак, сначала краткое описание последовательности действий реализованных на C# (куски кода будут ниже):

1. Загрузить данные из csv. Использовалась библиотека Fast Csv Reader.
2. Отфильтровать расходные операции и выполнить группировку по месяцам.
3. Добавить каждому клиенту те категории, по которым у него не было операций. Для того, чтобы избежать длительный перебор цикл-в-цикле использовал фильтр Блума. Реализацию на C# нашел тут.
4. Формирование массива Hashing trick. Так как готовой реализации под C# не удалось найти, пришлось реализовать самому. Для этого скачал и допилил реализацию хеширования murmurhash3
5. Собственно расчет регрессии.
Читать дальше →
Total votes 17: ↑10 and ↓7 +3
Views 12K
Comments 12

Использование инструментов исследования NES-игр на примере разбора формата компрессии игры Felix The Cat

Game development *Reverse engineering *
В этой статье я расскажу, как использовать описанные в прошлой статье инструменты для исследования игры Felix The Cat для NES. Моя первоначальная цель была, как обычно, разобрать формат уровней игры и добавить её в свой универсальный редактор уровней CadEditor, однако в ходе изучения игры обнаружилось, что описание уровней сжато (это редкость для NES-игр!), поэтому я также разобрал формат компрессии данных, и написал компрессор, позволяющий сжимать отредактированные уровни так же, как это делали разработчики игры.


Читать дальше →
Total votes 31: ↑31 and ↓0 +31
Views 6.8K
Comments 5

Визуализация результатов выборов в Москве на карте в Jupyter Notebook

Open Data Science corporate blog Python *Data Mining *Geoinformation services *Data visualization *


Всем привет!


Сегодня мы поговорим о визуализации геоданных. Имея на руках статистику, явно имеющую пространственную привязку, всегда хочется сделать красивую карту. Желательно, с навигацией да инфоокнами В тетрадках. И, конечно же, чтоб потом можно было показать всему интернету свои успехи в визуализации!


В качестве примера возьмем недавно отгремевшие муниципальные выборы в Москве. Сами данные можно взять с сайта мосгоризбиркома, в можно просто забрать датасеты с https://gudkov.ru/. Там даже есть какая-никакая визуализация, но мы пойдем глубже. Итак, что же у нас в итоге должно получиться?

Читать дальше →
Total votes 61: ↑59 and ↓2 +57
Views 36K
Comments 45

Jupyter Widgets для реализации UI машины Тьюринга

Python *Programming *Algorithms *
Tutorial

Привет, Хабр! Хочу поделиться опытом в быстром создание интерфейса в Jupyter Notebook. Если у тебя есть какая-то задача, для которой нужен простой UI, и ты почему-то захотел сделать её в Юпитере, то добро пожаловать под кат.


Читать дальше →
Total votes 10: ↑8 and ↓2 +6
Views 6.6K
Comments 0

Настраиваем VM Instance Google Cloud для задач машинного обучения

High performance *Virtualization *Cloud computing *Machine learning *Google Cloud Platform *
Sandbox

Решение тяжёлых задач машинного обучения на стационарных компьютерах дело неблагодарное и малоприятное. Представьте, что вы на домашнем ноутбуке делаете ансамбль из N нейронных сетей для изучения лесов Амазонки на ноутбуке. Сомнительное удовольствие, тем более, что сейчас есть прекрасный выбор облачных сервисов для этих целей — Amazon Web Services, Google Cloud Platform, Microsoft Azure и прочие. Некоторые даже относительно бесплатны и предоставляют видеокарты.


image


Мы будем настраивать VM на Google Cloud Platform с нуля. Бонусом — стартовые 300$ на год на один gmail аккаунт. Поехали.


  1. Создание и настройка Virtual Machine Instances
  2. Настройка сетевых параметров
  3. Установка Anaconda и дополнительных пакетов
  4. Настройка Jupyter Notebook
  5. Настройка File Transfer
Читать дальше →
Total votes 16: ↑15 and ↓1 +14
Views 37K
Comments 8

Pygest #23. Новости, релизы, статьи, интересные проекты и библиотеки из мира Python [4 февраля 2018 — 26 февраля 2018]

Python *

image Всем привет! Это уже двадцать третьи выпуск дайджеста на Хабрахабр о новостях из мира Python.

Присылайте свои интересные материалы из мира Python.

С предыдущим digest можно ознакомиться здесь.

Читать дальше →
Total votes 22: ↑22 and ↓0 +22
Views 8.9K
Comments 2

Бесплатная GPU Tesla K80 для ваших экспериментов с нейросетями

*nix *GPGPU *Machine learning *Google Cloud Platform *


Около месяца назад Google сервис Colaboratory, предоставляющий доступ к Jupyter ноутбукам, включил возможность бесплатно использовать GPU Tesla K80 с 13 Гб видеопамяти на борту. Если до сих пор единственным препятствием для погружения в мир нейросетей могло быть отсутствие доступа к GPU, теперь Вы можете смело сказать, “Держись Deep Learning, я иду!”.


Я попробовал использовать Colaboratory для работы над kaggle задачами. Мне больше всего не хватало возможности удобно сохранять натренированные tensorflow модели и использовать tensorboard. В данном посте, я хочу поделиться опытом и рассказать, как эти возможности добавить в colab. А напоследок покажу, как можно получить доступ к контейнеру по ssh и пользоваться привычными удобными инструментами bash, screen, rsync.

Читать дальше →
Total votes 44: ↑42 and ↓2 +40
Views 65K
Comments 29

JupyterHub, или как управлять сотнями пользователей Python. Лекция Яндекса

Яндекс corporate blog Python *System Analysis and Design *Industrial Programming *
Платформа Jupyter позволяет начинающим разработчикам, аналитикам данных и студентам быстрее начать программировать на Python. Предположим, ваша команда растёт — в ней теперь не только программисты, но и менеджеры, аналитики, исследователи. Рано или поздно отсутствие совместного рабочего окружения и сложность настройки начнут тормозить работу. Справиться с этой проблемой поможет JupyterHub — многопользовательский сервер c возможностью запускать Jupyter одной кнопкой. Он отлично подходит для тех, кто преподаёт Python, а также для аналитиков. Пользователю нужен только браузер: никаких проблем с установкой ПО на ноутбук, совместимостью, пакетами. Мейнтейнеры Jupyter активно развивают JupyterHub наряду с JupyterLab и nteract.

Меня зовут Андрей Петрин, я руководитель группы аналитики роста в Яндексе. В докладе на Moscow Python Meetup я напомнил о плюсах Jupyter и рассказал про архитектуру и принципы работы JupyterHub, а также про опыт применения этих систем в Яндексе. В конце вы узнаете, как поднять JupyterHub на любом компьютере.


— Начну с того, кто такие аналитики в Яндексе. Существует аналогия, что это такая многорукая Шива, которая умеет делать сразу много разных вещей и сочетает в себе много ролей.

Всем привет! Меня зовут Андрей Петрин, я руководитель группы аналитики роста в Яндексе. Я расскажу про библиотеку JupyterHub, которая в свое время сильно упростила нам жизнь в аналитике Яндекса, мы буквально почувствовали буст продуктивности большого количества команд.
Total votes 34: ↑34 and ↓0 +34
Views 32K
Comments 3

Julia. Знакомство

Julia *
Sandbox

Ода Джулии



Очень трудно передать весь восторг, который сопутствовал запуску первых программ и исправлению первых ошибок с использованием этого языка. Прост и красив как Python, немножко похож на Fortran, удобная работа с массивами и графиками, а также возможность осуществлять лютую оптимизацию и распараллеливание даже для таких чайников, как я мои одногруппники. Можно работать на разных уровнях абстракции: от высокоуровневого программирования с динамической типизацией можно спуститься до ассемблерных команд, то есть, тут вам и питонская общедоступность и скорость выполнения фортрановских считалок. Не могу отделаться от ощущения, что Mathcad, Scilab и даже, прости Господи, C++ начинают в моем сердце уходить на второй план.

Читать дальше →
Total votes 40: ↑40 and ↓0 +40
Views 49K
Comments 128

Google News и Лев Толстой: визуализация векторных представлений слов с помощью t-SNE

VK corporate blog Python *Big Data *Data visualization *Machine learning *


Каждый из нас воспринимает тексты по-своему, будь это новости в интернете, поэзия или классические романы. То же касается алгоритмов и методов машинного обучения, которые, как правило, воспринимают тексты в математической в форме, в виде многомерного векторного пространства.

Статья посвящена визуализации при помощи t-SNE рассчитанных Word2Vec многомерных векторных представлений слов. Визуализация позволит полнее понять принцип работы Word2Vec и то, как следует интерпретировать отношения между векторами слов перед дальнейшем использованием в нейросетях и других алгоритмах машинного обучения. В статье акцентируется внимание именно на визуализации, дальнейшее исследование и анализ данных не рассматриваются. В качестве источника данных мы задействуем статьи из Google News и классические произведения Л.Н. Толстого. Код будем писать на Python в Jupyter Notebook.
Читать дальше →
Total votes 30: ↑28 and ↓2 +26
Views 9.2K
Comments 9

Создание и настройка портативной сборки Jupyter Notebook и Lab на Windows. Часть 1

Python *
Tutorial

Всем привет. Когда я начинал изучение Python, устанавливал впервые Jupyter Notebook, потом пытался передать с созданное в нём приложение на предприятие, я часто сталкивался с различными проблемами. То кириллица в имени пользователя мешает, то настройки не перенеслись, то ещё чего-то. Все эти проблемы я преодолел в основном самостоятельно, используя Google и затратив немало времени на их решение.


По мере роста опыта я научился создавать папку, в которой лежит переносимое с одного компьютера на другой виртуальное окружение Python, настройки Jupyter и Matplotlib, портативные программы (ffmpeg и др.) и шрифты. Я мог написать дома программу, скопировать всю эту папку на компьютер предприятия, и быть уверенным, что ничего не потеряется и не сломается на ровном месте. Потом я подумал, что такую папку можно дать и новичку в Python, и он получит полностью настроенную и переносимую среду.

Как создать такую папку
Total votes 15: ↑14 and ↓1 +13
Views 54K
Comments 9

Jupyter Notebook в Netflix

Python *Big Data *Machine learning *
Translation

В последнее время Jupyter Notebook стал очень популярен среди специалистов Data Science, став де-факто стандартом для быстрого прототипирования и анализа данных. В Netflix, стараемся раздвинуть границы его возможностей еще дальше, переосмысливая то, чем может быть Notebook, кем может быть использован, и что они могут могут с ним делать. Мы вкладываем много сил, чтобы воплотить наше видение в реальность.


В данной статье мы хотим рассказать почему считаем что Jupyter Notebooks настолько привлекательным и что вдохновляет нас на этом пути. Кроме того, опишем компоненты нашей инфраструктуры и сделаем обзор новых способов использования Jupyter Notebook в Netflix.



Примечание от переводчика: осторожно, много текста и мало картинок

Читать дальше →
Total votes 7: ↑7 and ↓0 +7
Views 11K
Comments 5