Pull to refresh
  • by relevance
  • by date
  • by rating

Графика средствами Python

Programming *
В издательстве Apress вышла книга Beginning Python Visualization: Crafting Visual Transformation Scripts, посвящённая визуализации данных с помощью Python и смежных инструментов. Это уникальная в своём роде работа, потому что на Питоне такие вещи делают довольно редко. Автор книги говорит, что сам искал такое руководство для своей работы, но не нашёл, и ему пришлось разбираться самостоятельно.

В книге приводится несколько примеров, как можно визуализировать данные. Например, с помощью Python можно извлечь данные из GPS-ресивера через серийный порт и уже на компьютере обработать как душе угодно, в том числе создавать графики и диаграммы. Автор показывает всё это на примере конкретного GPS-приёмника и модуля PySerial.

Самое главное в книге — подробная демонстрация, как работать с известными для визуализации математических и научных данных MatPlotLib, NumPy и SciPy, а также с библиотекой PIL (Python Imaging Library) для простейшей обработки изображений.

Полистать книгу можно в магазине Amazon (по ссылке выше).
Total votes 41: ↑36 and ↓5 +31
Views 12K
Comments 29

Взлом каптчи файлообменника

Artificial Intelligence

Введение



В данной статье коротко рассказывается о процессе взлома captcha с ifolder.ru. Применение в процессе языка Python и сторонних библиотек. Применение алгоритма преобразований Хафа в составе библиотеки Open Computer Vision © Intel позволит нам избавиться от шума на изображении, простая в использовании и быстрая библиотека FANN (Fast Artificial Neural Network) сделает возможным применение искусственной нейронной сети для задачи распознавания образа.

Моя мотивация состояла, прежде всего, в том, чтобы попробовать язык Python. Как известно, лучший способ изучить язык — решить на нём какую-нибудь прикладную задачу. Поэтому параллельно описанию процесса обработки изображения я буду рассказывать о том, какие библиотеки и для чего я использовал.
Сломать мозг
Total votes 183: ↑178 and ↓5 +173
Views 28K
Comments 68

Визуализация каталогов на Python средствами NetworkX

Python *
Sandbox
Листая на Хабре раздел Python наткнулся на интересную статью о библиотеке NetworkX. Впечатлившись красивыми графами, решил повысить свой python-скилл и покопаться в networkx.
image

Пролог


Первый вопрос — откуда взять данные для визуализации? Генерировать случайные не интересно, они и в комплекте модуля были. Тут вспомнилась Dos утилитка tree, выводящая каталоги файловой системы в виде дерева. Решено было написать красивый аналог на Python и нарисовать все в networkx с помощью matplotlib.
шоу продолжается
Total votes 49: ↑48 and ↓1 +47
Views 14K
Comments 35

Визуализация клонов в проекте на Python

Python *Perfect code *

Недавно в нашем проекте потребовалось настроить мониторинг качества кода. Качество кода — понятие субъективное, однако давным-давно придумали множество метрик, позволяющих провести мало-мальски количественный анализ. К примеру, цикломатическая сложность или индекс поддерживаемости (maintainability index). Измерение подобного рода показателей — обычное дело для языков вроде Java или C++, однако (складывается впечатление) в питоньем сообществе редко когда кто-то об этом задумывается. К счастью, существует замечательный radon с xenon-ом, который быстро и качественно вычисляет упомянутые выше метрики и даже некоторые другие. Конечно, для профессиональных enterprise инструментов маловато, но все необходимое присутствует.

Кроме вычисления метрик, бывает также полезно провести анализ зависимостей. Если в проекте задекларирована архитектура, то между отдельными частями должны существовать определенные связи. Самый частый пример: приложение построено вокруг библиотеки, предоставляющей API, и весьма нежелательно выполнять действия в обход этого API. Другими словами, нехорошо ioctl-ить в ядро когда libc есть. Для питона есть несколько пакетов, строящих граф зависимостей между модулями, и snakefood показался мне самым удачным.

Помимо анализа зависимостей, не менее полезно определять копипасту, особенно, если в проекте задействованы джуниоры или другие люди, любящие «срезать углы болгаркой». Об этом собственно и пойдет речь в статье.
clonedigger
Total votes 17: ↑16 and ↓1 +15
Views 9K
Comments 4

Некоторые репозитории в помощь изучающим и преподающим Python и машинное обучение

Python *Programming *Machine learning *


Привет сообществу!

Я Юрий Кашницкий, раньше делал здесь обзор некоторых MOOC по компьютерным наукам и искал «выбросы» среди моделей Playboy.

Сейчас я преподаю Python и машинное обучение на факультете компьютерных наук НИУ ВШЭ и в онлайн-курсе сообщества по анализу данных MLClass, а также машинное обучение и анализ больших данных в школе данных одного из российских телеком-операторов.

Почему бы воскресным вечером не поделиться с сообществом материалами по Python и обзором репозиториев по машинному обучению… В первой части будет описание репозитория GitHub с тетрадками IPython по программированию на языке Python. Во второй — пример материала курса «Машинное обучение с помощью Python». В третьей части покажу один из трюков, применяемый участниками соревнований Kaggle, конкретно, Станиславом Семеновым (4 место в текущем мировом рейтинге Kaggle). Наконец, сделаю обзор попавшихся мне классных репозиториев GitHub по программированию, анализу данных и машинному обучению на Python.

Читать дальше →
Total votes 26: ↑24 and ↓2 +22
Views 60K
Comments 11

Kaggle и Titanic — еще одно решение задачи с помощью Python

Sport programming *Python *Programming *Machine learning *
Tutorial
Хочу поделиться опытом работы с задачей известного конкурса по машинному обучению от Kaggle. Этот конкурс позиционируется как конкурс для начинающих, а у меня как раз не было почти никакого практического опыта в этой области. Я немного знал теорию, но с реальными данными дела почти не имел и с питоном плотно не работал. В итоге, потратив пару предновогодних вечеров, набрал 0.80383 (первая четверть рейтинга).



Читать дальше →
Total votes 31: ↑30 and ↓1 +29
Views 69K
Comments 6

Python и красивые ножки: как я бы знакомил сына с математикой и программированием

Entertaining tasks Python *Programming *Mathematics *
Раньше мы уже искали необычные модели Playboy с помощью библиотеки Python Scikit-learn. Теперь мы продемонстрируем некоторые возможности библиотек SymPy, SciPy, Matplotlib и Pandas на живом примере из разряда занимательных школьных задач по математике. Цель — облегчить порог вхождения при изучении Python библиотек для анализа данных.



Читать дальше →
Total votes 70: ↑60 and ↓10 +50
Views 104K
Comments 65

Сравниваем цены в книжных интернет магазинах c помощью python, pandas и matplotlib

Python *Data Mining *
Сегодня мы попробуем найти самый дешевый и самый дорогой интернет магазин книг.
Сравнивать будем бумажные книги, которые есть в наличии. В разных магазинах очень разное количество книг. Где-то менее 1000, а где-то более 200 000 книг.



Кстати, гистограмма настоящая. Как она построена и другие интересные закономерности под катом.
Читать дальше
Total votes 26: ↑24 and ↓2 +22
Views 29K
Comments 28

Визуализация статистики ЕВРО-2016 с помощью Python и Inkscape

Python *API *Data visualization


Привет, Хабр!

Прошло чуть больше недели с окончания Чемпионата Европы 2016 во Франции. Этот чемпионат запомнится нам неудачным выступлением сборной России, проявленной волей сборной Исландии, потрясающей игрой сборных Франции и Португалии. В этой статье мы поработаем с данными, построим несколько графиков и отредактируем их в векторном редакторе Inkscape. Кому интересно — прошу под кат.
Читать дальше →
Total votes 19: ↑19 and ↓0 +19
Views 16K
Comments 16

Базовые принципы машинного обучения на примере линейной регрессии

Open Data Science corporate blog Python *Algorithms *Mathematics *Machine learning *
Здравствуйте, коллеги! Это блог открытой русскоговорящей дата саентологической ложи. Нас уже легион, точнее 2500+ человек в слаке. За полтора года мы нагенерили 800к+ сообщений (ради этого слак выделил нам корпоративный аккаунт). Наши люди есть везде и, может, даже в вашей организации. Если вы интересуетесь машинным обучением, но по каким-то причинам не знаете про Open Data Science, то возможно вы в курсе мероприятий, которые организовывает сообщество. Самым масштабным из них является DataFest, который проходил недавно в офисе Mail.Ru Group, за два дня его посетило 1700 человек. Мы растем, наши ложи открываются в городах России, а также в Нью-Йорке, Дубае и даже во Львове, да, мы не воюем, а иногда даже и употребляем горячительные напитки вместе. И да, мы некоммерческая организация, наша цель — просвещение. Мы делаем все ради искусства. (пс: на фотографии вы можете наблюдать заседание ложи в одном из тайных храмов в Москве).

Мне выпала честь сделать первый пост, и я, пожалуй, отклонюсь от своей привычной нейросетевой тематики и сделаю пост о базовых понятиях машинного обучения на примере одной из самых простых и самых полезных моделей — линейной регрессии. Я буду использовать язык питон для демонстрации экспериментов и отрисовки графиков, все это вы с легкостью сможете повторить на своем компьютере. Поехали.
Читать дальше →
Total votes 89: ↑82 and ↓7 +75
Views 133K
Comments 22

Отчет о старте Atos IT Challenge

Python *Data Mining *Data visualization Machine learning *
Sandbox

Есть ли у вас та штука, что называется pet project или side project? Тот самый проект, который бы вы делали в свое удовольствие и для себя, для саморазвития или расширения портфолио. Лично у меня долгое время не было ничего, что можно было бы показать. Однако, в рамках стартовавшего этой осенью конкурса Atos IT Challenge 2018, у меня как раз появилась возможность начать такой проект.

Читать дальше →
Total votes 11: ↑11 and ↓0 +11
Views 2.8K
Comments 0

Простой монитор системы на Flask

System administration *Python *Flask *
Привет, Хабр!

Недавно возникла необходимость сделать простой и расширяемый монитор использования системы для сервера на Debian. Хотелось строить диаграммы и наблюдать в реальном времени использование памяти, дисков и тп. Нашел много готовых решений, но в итоге сделал скрипт на python + Flask + psutil. Получилось очень просто и функционально. Можно легко добавлять новые модули.


Читать дальше →
Total votes 14: ↑12 and ↓2 +10
Views 12K
Comments 27

Анализ данных с использованием Python

Python *Programming *Data visualization
Sandbox

Язык программирования Python в последнее время все чаще используется для анализа данных, как в науке, так и коммерческой сфере. Этому способствует простота языка, а также большое разнообразие открытых библиотек.


В этой статье разберем простой пример исследования и классификации данных с использованием некоторых библиотек на Python. Для исследования, нам понадобится выбрать интересующий нас набор данных (DataSet). Разнообразные наборы Dataset'ы можно скачать с сайта. DataSet обычно представляет собой файл с таблицей в формате JSON или CSV. Для демонстрации возможностей исследуем простой набор данных с информацией о наблюдениях НЛО. Наша цель будет не получить исчерпывающие ответы на главный вопрос жизни, вселенной и всего такого, а показать простоту обработки достаточно большого объема данных средствами Python. Собственно, на месте НЛО могла быть любая таблица.


Читать дальше →
Total votes 35: ↑29 and ↓6 +23
Views 118K
Comments 24

Как Microsoft забыла про полмира или читайте сообщения об ошибках

Python *Big Data *Data visualization Language localisation *
Sandbox

Нет, это статья не про то, какой огромный и злобный монстр компания Microsoft. И как она опять обижает пользователей. А про то, как исправить досадный изъян, появившийся с последним, августовским обновлением Power BI Desktop c включённой поддержкой Python, а именно проблемы с визуализацией в локализованных версиях PBI, в частности matplotlib.

В первой декаде августа Microsoft выпустила давно и с нетерпением ожидавшийся релиз своего действительно замечательного BI-продукта с поддержкой языка Python. На момент написания статьи эта функциональность находится в разделе предварительных возможностей (т.е. просто бета-версия).
Читать дальше →
Total votes 22: ↑20 and ↓2 +18
Views 7.6K
Comments 7

«Storytelling with Data», Cole Nussbaumer Knaflic: неформальный обзор-конспект книги

True Engineering corporate blog Data Mining *Data visualization Machine learning *
«Наши сайнтисты сгенерировали кучу графиков, а мы совершенно не знаем, куда их девать. Давайте попробуем их хоть как-то пристроить». (с) подслушано

«Плохие графики везде. В моей работе я постоянно встречаю крайне сомнительные визуализации данных. Никто не делает плохие графики намеренно. Но это происходит. Опять и опять. В каждой компании во всех отраслях экономики сотрудниками всех уровней. Это происходит в СМИ. Это происходит там, где вы ожидаете, что люди должны уметь визуализировать данные». (с) автор книги

Это происходит и здесь, на Хабре: просматривая статьи в потоке «Визуализация данных», часто ловлю себя на мысли, что не понимаю и не могу схватить суть того, что отображено. В статье рассмотрим несколько примеров. И что самое неприятное для меня, это происходит и в моей работе тоже. Не постоянно, но чаще, чем хотелось бы.



Название книги «Storytelling with Data» звучало убедительно. Выбрал её для вечернего чтения и не пожалел. В книге нет формул, хитрых и необычных графиков, сложных кейсов. Понятный английский. Качественная печать. Читается как художественная литература. Книга будет полезна всем, кому приходится делать презентации на основе данных. Думаю, что особенную пользу она принесёт тем, кто занимается аналитикой данных.

Этот обзор очень неформальный: вперемешку идут мысли автора книги, мои мысли, ситуации из моей работы, а также шпаргалки по matplotlib по ссылкам. Будет много картинок. Почти все иллюстрации перерисованы из книги на Python.
Читать дальше →
Total votes 18: ↑18 and ↓0 +18
Views 9.1K
Comments 1

Как без особенных усилий создать ИИ-расиста

Python *Machine learning *Artificial Intelligence
Translation
Tutorial
Предостерегающий урок.

Сделаем классификатор тональности!

Анализ тональности (сентимент-анализ) — очень распространённая задача в обработке естественного языка (NLP), и это неудивительно. Для бизнеса важно понимать, какие мнения высказывают люди: положительные или отрицательные. Такой анализ используется для мониторинга социальных сетей, обратной связи с клиентами и даже в алгоритмической биржевой торговле (в результате боты покупают акции Berkshire Hathaway после публикации положительных отзывов о роли Энн Хэтэуэй в последнем фильме).

Метод анализа иногда слишком упрощён, но это один из самых простых способов получить измеримые результаты. Просто подаёте текст — и на выходе положительные и отрицательные оценки. Не нужно разбираться с деревом синтаксического анализа, строить граф или какое-то другое сложное представление.
Читать дальше →
Total votes 18: ↑15 and ↓3 +12
Views 8K
Comments 2

Жизненный цикл статьи на Хабре: пишем хабрапарсер. Часть вторая

Python *Programming *Web analytics *Statistics in IT Social networks and communities
Привет Хабр!

В первой части пятничного анализа была рассмотрена методика сбора некоторой статистики этого замечательного сайта. Изначально не было плана делать продолжение, но в комментариях возникли интересные мысли, которые захотелось проверить. Например, какие статьи имеют больше просмотров, опубликованные в будние или в выходные дни?

image

Попробуем ответить на этот и другие вопросы, также опубликуем свой чисто научный статистический мини-рейтинг. Как и в первой части, для сбора статистики воспользуемся Python, Pandas и Matplotlib.

Для тех кому интересно что получилось, продолжение под катом.
Читать дальше →
Total votes 24: ↑23 and ↓1 +22
Views 3.6K
Comments 13

Хабрарейтинг 2018: лучшие материалы за 2018 год

Python *Programming *Web analytics *Statistics in IT Social networks and communities
Привет Хабр.

Данный пост является логическим завершением публикаций про жизненный цикл статьи на Хабре (первая и вторая части для тех кто интересуется технической стороной вопроса), в результате чего был сделан достаточно интересный инструмент для статистического анализа. Методика оказалась весьма полезной, и позволяет находить статьи по различным параметрам, например, статьи с самым высоким «качеством» (соотношением рейтинга к числу просмотров), самые «спорные» статьи, у которых больше всего полярных комментариев, самые комментируемые материалы, и пр.



Пора теперь извлечь из этого какую-то пользу, и составить статистический рейтинг статей за 2018 год. В идеале это хорошо было бы сделать к началу Нового Года, но умные мысли бывает, приходят с запозданием. Но лучше поздно чем никогда, это позволит перечитать какие-то полезные статьи тем, кто пропустил их в свое время. И небольшой «секретный бонус» в конце текста для тех, кто будет достаточно любопытен.

Тех, кому интересно что получилось, прошу под кат.
Читать дальше →
Total votes 49: ↑46 and ↓3 +43
Views 23K
Comments 25

Хабрамегарейтинг: лучшие статьи и статистика Хабра за 12 лет. Часть 1/2

Python *Research and forecasts in IT Web analytics *Statistics in IT Social networks and communities
Привет Хабр.

После публикации рейтинга статей за 2017 и 2018 год, следующая идея была очевидна — собрать обобщенный рейтинг за все годы. Но просто собрать ссылки было бы банально (хотя и тоже полезно), поэтому было решено расширить обработку данных и собрать еще немного полезной информации.



Рейтинги, статистика и немного исходного кода на Python под катом.
Читать дальше →
Total votes 41: ↑39 and ↓2 +37
Views 11K
Comments 17

Хабрамегарейтинг: лучшие статьи и статистика Хабра за 12 лет. Часть 2/2

Python *Research and forecasts in IT Web analytics *Statistics in IT Social networks and communities
Привет, Хабр.

В первой части были рассмотрены некоторые закономерности развития такого интересного ресурса, как habrahabr. Материал получился длинный, так что продолжение здесь. В этой части мы заодно посмотрим как строить такие картинки, и наконец, завершим нашу статистику и рейтинг.



Кому интересны результаты, прошу под кат.
Читать дальше →
Total votes 47: ↑45 and ↓2 +43
Views 17K
Comments 39