Если кто еще не видел:
Сначала на всякий случай о том чего это такое, а потом о том, что у меня, как у программера, сомнения вызывает, что на нетбуках без 3D карт, скоро будут в Crysis 3 играть…
(дальше очень много слов и технических деталей)
Мы уже упоминали шейдеры в предыдущем уроке. Шейдеры — это небольшие программы выполняемые на графическом ускорителе (далее будем использовать более распространенное название — GPU). Эти программы выполняются для каждого конкретного участка графического конвейера. Если описывать шейдеры наиболее простым способом, то шейдеры — это не более чем программы преобразующие входы в выходы. Шейдеры обычно изолированы друг от друга, и не имеют механизмов коммуникации между собой кроме упомянутых выше входов и выходов.
В предыдущем уроке мы кратко коснулись темы “поверхностных шейдеров” и того, как их использовать. В данном уроке мы рассмотрим шейдеры подробнее и в частности шейдерный язык OpenGL (OpenGL Shading Language).
В прошлом уроке мы научились раскрашивать наши объекты в разные цвета. Но для того, чтобы добиться некого реализма нам потребуется очень много цветов. В прошлый раз, мы раскрашивали вершины треугольника, если мы пойдем тем же путем, то нам понадобится слишком большое количество вершин для вывода картинки. Заинтересовавшихся, прошу под кат.
Теперь мы знаем как создавать объекты, раскрашивать их и накладывать на них текстуры, но они все еще довольно скучны, поскольку являются статическими объектами. Мы можем попробовать заставить их двигаться изменяя координаты вершин для каждого кадра, но это довольно муторно и требует процессорных вычислений. Есть гораздо более удобный способ для совершения трансформаций над объектом — это применение матриц. Но это не значит, что мы сейчас будем разговаривать про кунг фу и искусственный цифровой мир.
В предыдущем уроке обсуждалась матрица вида, и то, как её можно использовать для перемещения по сцене (мы немного отодвинули назад точку зрения наблюдателя). В OpenGL отсутствует концепция камеры, но можно попытаться её сымитировать, перемещая все объекты сцены в направлении противоположном движению наблюдателя, и тем самым создать иллюзию, что движемся мы сами.
В этом уроке мы рассмотрим, как можно создать камеру в OpenGL. Мы обсудим камеру типа FPS (First Person Shooter), которая позволит вам свободно перемещаться в трехмерной сцене. Кроме того, мы поговорим о вводе с клавиатуры и мыши, а закончим созданием собственного C++ класса камеры.
Перевод очередного урока с сайта learnopengl.com. Недавно обнаружил на русском Уроки по OpenGL с сайта OGLDev, но некоторые из них требуют 4 версию opengl, а примеры кода слишком зависимы от предыдущих уроков и объектно-ориентированы. Поэтому, вниманию всех интересующихся opengl'ем новичков со стареньким железом предлагаю коротенькую статью о цвете, с которой начинается вторая часть обучающего курса от Joey de Vries:
Распространение света в реальном мире это чрезвычайно сложное явление, зависящее от слишком многих факторов, и, располагая ограниченными вычислительными ресурсами, мы не можем себе позволить учитывать в расчетах все нюансы. Поэтому освещение в OpenGL основано на использовании приближенных к реальности упрощенных математических моделей, которые выглядят достаточно похожими, но рассчитываются гораздо проще. Эти модели освещения описывают физику света исходя из нашего понимания его природы. Одна из этих моделей называется моделью освещения по Фонгу (Phong). Модель Фонга состоит из трех главных компонентов: фонового (ambient), рассеянного/диффузного (diffuse) и бликового (specular). Ниже вы можете видеть, что они из себя представляют:
Пару дней назад я наткнулся на первую статью из этой серии уроков. К сожалению, переведены только начальные уроки, а все самое интересное (SSAO, PBR, тени) только впереди. Этот курс переводили три человека (теперь четыре), и я надеюсь, что кто-то из читателей поможет с переводом остальных частей. К сожалению, я не являюсь профессиональным переводчиком, по этом в тексте могут быть ошибки разного характера. Буду рад, если вы сообщите о них. Приятного чтения!
Ранее мы обсуждали возможность каждого объекта иметь уникальный материал, чтобы по-разному реагировать на свет. Это отлично подходит для того, чтобы придать каждому объекту уникальный вид относительно других объектов на сцене. Но этого все еще не дает нам большой гибкости в настройке внешнего вида объекта.
Information