Pull to refresh

Анализ аудиоданных (часть 3)

Python *Programming *Data visualization *Machine learning *Sound

Машинное обучение

В третьей части анализа аудиоданных мы разберем относительно простой и более быстрый способ классификации аудиофайлов - алгоритм машинного обучения - SVM (Support Vector Machines) / машины опорных векторов.

В двух частях анализа аудиоданных мы рассмотрели характеристики, которые есть у каждого аудиосигнала и извлечение значимых характеристик.

Мы получили набор данных, содержащий значимые характеристики аудиоданных (45 значений) в машиночитаемом виде - Двухмерная таблица - Dataframes, состоящая из 47столбцов и 50000 строк.

1 часть

2 часть

Все признаки (характеристики) важны при анализе аудиоданных, так как описывают физические свойства звука: высоту, громкость, тембр и т. д.

При прохождении воздуха через голосовые связки возникают вибрации, которые в виде упругих волн распространяются в среде. Каждый звук представляет собой набор волн. Это основной тон - волны гендерной идентификации ( у каждого говорящего базовая частота основного тона  индивидуальна и обусловлена особенностями строения гортани, в среднем для мужского голоса она составляет от 80 до 210 Гц, для женского - от 150 до 320 Гц. ). Это волны - обертоны ( призвуки, которые выше основного тона) и волны форманты (распознавание речи) связанные с уровнем частоты голосового тона, которые образуют тембр звука.

Читать далее
Total votes 5: ↑5 and ↓0 +5
Views 2.4K
Comments 6

What are neural networks and what do we need them for?

Mathematics *Machine learning *Data Engineering *

Explaining through simple examples

For a long time, people have been thinking on how to create a computer that could think like a person. The advent of artificial neural networks is a significant step in this direction. Our brain consists of neurons that receive information from sensory organs and process it: we recognize people we know by their faces, and we feel hungry when we see delicious food. All of this is the result of brain neurons working and interacting with each other. This is also the principle that artificial neural networks are based on, simulating the processes occurring in the human brain.

What are neural networks

Artificial neural networks are a software code that imitates the work of a brain and is capable of self-learning. Like a biological network, an artificial network also consists of neurons, but they have a simpler structure.

If you connect neurons into a sufficiently large network with controlled interaction, they will be able to perform quite complex tasks. For example, determining what is shown in a picture, or independently creating a photorealistic image based on a text description.

Read more
Total votes 1: ↑1 and ↓0 +1
Views 693
Comments 0