Приглашаем посмотреть задания, которые мы использовали для онлайн-этапа отбора, а также решения для них.

User
На этой неделе мы посмотрим, как можно работать чуточку быстрее, чем вчера. Разбираемся и внедряем в свои проекты пайплайны реактивного программирования, автоматически потрошим тексты и превращаем модели машинного обучения в интерактивные веб приложения.
Знаете, меня вряд ли можно назвать сеньором. У меня всего 3 года опыта разработки и повидал я сравнительно мало. Но я помню те тяжелые дни, когда я оказался на своей первой работе и мне пришлось буквально заставлять себя делать хорошо. Когда не понимал зачем нужен git и закрывал задачи без проверки. Если бы я посоветовал себе несколько вещей, то, возможно, мой карьерный путь был бы менее тернист. Потому спешу поделиться этими советами, пока память свежа, и подискутировать над тем, что считаю хорошими рекомендациями начинающему специалисту!
Всем привет!
Кратко о себе. По образованию я математик, а вот по профессии — программист. В сфере разработки с 2006 года. Хотя, поскольку программирование начали изучать ещё в школе, свои первые программки и игры я начал писать ещё в школе (примерно, с 2003). Так сложилось, что пришлось выучить и поработать на нескольких языках. Если не брать во внимание ВУЗ-овские лекции по С, С++, Бэйсику, Паскалю и Фортрану, то реально я работал с Delphi (более 6 лет), PHP (более 5 лет), Embedded (Atmel + PIC около 2.5 лет) и последним временем Python + чуть-чуть Scala. Конечно же без баз данных тоже никак не обойтись.
Для кого эта статья? Для всех, кто, как и я, хотел (или хочет) найти для себя достойную хорошо оплачиваемую работу с интересным проектом, классным коллективом и всякими плюшками. А также для тех, кто желает поднять свой уровень знаний и мастерства.
В этом руководстве мы рассмотрим основные ошибки Django-разработчиков и узнаем, как их избежать. Статья может быть полезна даже опытным разработчикам, потому что и они совершают такие ошибки, как поддержка неподъёмно больших настроек или конфликтов имён в статических ресурсах.
(Полный исходный код лежит тут)
Сидя на пятичасовом занятии по химии, я часто скользил взглядом по таблице Менделеева, висящей на стене. Чтобы скоротать время, я начал искать слова, которые мог бы написать, используя лишь обозначения элементов из таблицы. Например: ScAlEs, FeArS, ErAsURe, WAsTe, PoInTlEsSnEsS, MoISTeN, SAlMoN, PuFFInEsS.
Затем я подумал, какое самое длинное слово можно составить (мне удалось подобрать TiNTiNNaBULaTiONS), поэтому я решил написать программу на Python, которая искала бы слова, состоящие из обозначений химических элементов. Она должна была получать слово и возвращать все его возможные варианты преобразования в наборы химических элементов:
Книга «Программируем коллективный разум» в основном посвящена алгоритмам классификации и кластеризации, хотя есть главы, посвященные другим темам вроде создания собственного поисковика, генетическим алгоритмам и генетическому программированию. Почти все описанные алгоритмы применяются в духе Web 2.0, используя анализ поведения пользователей на разных сайтах, которые предоставляют свой API. Но что особенно приятно удивило, так это то, что все примеры написаны на языке Python.
Вот какие алгоритмы описываются в книге:
Привет! Меня зовут Александр Курилкин, и я веду курс по алгоритмам в «ШАД Helper». В этом посте я разберу несколько задач из вступительных экзаменов прошлых лет, чтобы вы смогли увидеть, что вас ждет, и понять, чему мы сможем вас научить на нашем курсе. Надеюсь, что вы разделяете мою любовь к интересным задачам по алгоритмам и получите искреннее удовольствие от прочтения этого поста! Итак, приступим...
TL;DR это пост для вопросов/ответов про Data Science и о том, как войти в профессию и развиваться в ней. В статьей я разберу основные принципы и FAQ и готов отвечать на ваши конкретные вопросы — пишите в комментариях (или в личке), я постараюсь на все ответить в течение нескольких дней.С появлением цикла заметок «дата сатаниста» пришло немало сообщений и комментариев с вопросами о том, как начать и куда копать и сегодня мы разберем основные скиллы и вопросы возникшие после публикаций.
Уже два часа дня? Ничего за сегодня не сделал. Проснулся, потянулся, видел 6 голосовых сообщений — проигнорировал, принял душ, съел 3 вафли и улегся с мыслями, что мне 35, а я так и не выучил французский. Стоп, я не был в душе, это было вчера.
Попытался купить себе новые конверсы (кроссовки), но не смог выбрать между серым и обсидиановым, оба цвета мне не нравятся. Затем я отвлекся на лайфхаки на Medium, залип там минут на 90. Мне 35! Я думал, что уже давным-давно куплю себе крутую обувь и снимусь в фильме. Мой друг Сэнджей и то снялся в инди фильме. Все время рассказывает об этом.
В Python есть очень полезный тип данных для работы с множествами – это set. Об этом типе данных, примерах использования, и небольшой выдержке из теории множеств пойдёт речь далее.