Pull to refresh
291
46.2
Михаил Коробко @Shkaff

Физик

Send message

Одиночные фотоны тут всё же ведут себя полностью как не одиночные
(тонкие отличия надо поискать, проявив недюжинную виртуозность).

Нет, не нужна никакая виртуозность. Одиночные фотоны, например, имеют корреляционную функцию второго порядка отличную от 1. Со слабым потоком фотонов не сделать толком ничего полезного, в отличие от одиночных фотонов — именно из-за их разного состояния.

Поэтому предлагаю мирный компромисс. Пусть это звучит так "это квантовый эффект, наблюдаемый ОТЧАСТИ (и быть может даже "как бы"), своими глазами.

Нет, тут просто нет никакого квантового эффекта, наблюдаемого своими глазами.

Конечно, обычно их и используют во всех подобных экспериментах.

И интерферирует одиночный электрон с собой, а как уж там устроен ансамбль - просто не важно. С фотонами примерно то же самое.

Не то же самое. Вы сравниваете два разных эффекта. Если бы вы сравнивали ту же интерференцию с фотонами — у меня не было бы вопросов. Но мы говорим про конкретный эксперимент с поляризацией, где научпоп рассказывает про запутанность и теорему Белла. Так вот, ни запутанности, ни теоремы Белла не наблюдается при "классическом" состоянии фотона (т.е. когда это поток фотонов в пуассоновском распределении, а не приготовленные одиночные фотоны). Моя претензия именно в этом. Это не просто семантика, это конкретно неверные заявления со стороны научпопа.

Есть очень простой критерий: если вы наблюдаете существенно неклассические эффекты (суб-пуассоновскую статистику, отрицательную функцию Вигнера, нарушение неравенств Белла, туннелирование и т.п.), то это квантовая система. Во всех остальных случаях квантовое и классическое описание неотличимы.

Так мы-то говорим про классический свет, где фотоны имеют определенную поляризацию. Я уже писал тут выше, что моя главная проблема с постановкой проблемы, что мы типа своими глазами видим квантовый эффект. Я совершенно не спорю с тем, что если мы будем рассматривать квантовое состояние с самого начала, нам надо будет объяснять это квантово тоже.

Во-вторых,

Вот только перед фильтром фотон может не иметь ОПРЕДЕЛЁННОЙ поляризации
(например, в случае запутанных фотонов), а проходят фотоны так же
определённо

— в этом нет необычного тоже, это обычные проективные измерения. Вы коллапсируете чисто квантовое состояние (например запутанное) в полу-классическое (с четко заданным состоянием).

Ну да, я вроде про это и говорю: для этого всего не нужны кванты. Или я не понял вас?

Да, примерно так. Вот срез-иллюстрация для гауссовского пучка как функция расстояния от оси распространения (на картинке интенсивность, а не амплитуда, но не суть):

Подготовительное (мое, тут) утверждение - что для того, чтобы наблюдать
существенно квантовые эффекты, не обязательно детектировать единичные,
скажем, фотоны.

Обязательно (или производить аналогичные квантовые измерения). Например, я в лабе делаю и измеряю запутанные состояния не одиночных фотонов, а их целых ансамблей. Но это специально подготовленные состояние и специальные измерители. Просто так "глазами" увидеть квантовые эффекты за очень редкими исключениями нельзя.

Можно в том смысле, что он не разрушает квантовое состояние, не нарушает когерентность, не сбивает фазу.

Это как раз не так: поляризатор (тот, про который в статье) проецирует состояние на конкретный измерительный базис, не сохраняя квантового состояния. Так что поляризатор — это не квантовый прибор в этом смысле. Фотон, прошедший через него, оказывается в "классическом" состоянии (т.е. не в суперпозиции или запутанности).

И он дает кому хочешь наблюдать существенно квантовый (по сравнению с фотонами-классическими-частицами) эффект.

Так в том-то и дело, что они сначала сами придумали, что надо рассматривать тут почему-то одиночные фотоны, а не электромагнитную волну, и сами же решили, что это квантовый эффект, наблюдаемый своими глазами.

Но тут не только в этом провал: они объясняют это все через суперпозицию, приплетают теорему Белла и т.п. Но это все банально не работает для макроскопических состояний, как мы наблюдаем своими глазами. Для наблюдения этих эффектов нужно специально приготовленное квантовое состояние фотона.

И конечно, научпоперы, которые поадекватнее (ну и которые скажем не
десятый раз делают переводы с ухудшением и уже сами забыли с чего
когда-то вполне разумно началось), противопоставляют "квантовую"
поляризацию не "классической" поляризации максвелловской, а вот тем
самым (не реальным, а воображаемым) фотонам, которые как классические
камешки, без суперпозиции в пространстве поляризаций (которая к
классическим "камешкам" с трудом как-то и примысливается).

А вот с этим я согласен. Если бы эти статьи писались не с понтом, что мы наблюдаем квантовые эффекты своими глазами, а что это эффект, который для одиночных фотонов необъясним в рамках "фотон-как-камушек" парадигмы, то у меня не было б никаких к ним вопросов.

Кстати, любопытно, что до сих пор гравитацию не измеряли для объектов легче ~100мг. Так что неизвестно, действует ли она там вообще. Не говоря уж о малых расстояниях: там мы на расстояниях ближе пары мм тоже ничего не знаем.

Про историю — согласен, но это очень большая работа. Для этого нужна прямо серьезная мотивация написания текста.

О, классная мысль! Да, все верно, по крайней мере в идеальном случае. На практике, конечно, на каждом фильтре есть довольно значительные потери.

Но замечу, что обычная полуволновая пластинка делает ровно это самое.

Если вы просто хотите посчитать прохождение волны, вам не нужны квантовые вычисления, это чисто классический эффект. Если вы хотите посчитать, как именно плоскость поляризации вращается при прохождении через поляризатор, степень погружения в детали зависит от конкретного устройства поляризатора. Если это просто металлические нитки, все считается чисто классически. Если это какой-то кристалл, там нужно хотя бы частично использовать кванты.

И это пассивные устройства?

Простые изоляторы — пассивные, это просто поляризационный делитель луча и клетка Фарадея. Они полностью блокируют луч, проходящий в обратном направлении.

"невзаимные" девайсы обычно активные.

Зато его геометрическое положение изменится.

В каком смысле? Допустим, мы поставили зеркало после фильтра. Отраженная поляризация будет такой же, как входящая.

но в оптике-то нет такой вещи, как истинное одностороннее зеркало или фильтр, пропускающие свет только в одну сторону.

Вообще, есть: от обычных циркуляторов или изоляторов, которые разделяют путь "обратно" в другую сторону, до "невзаимных" (non-reciprocal) девайсов, которые пропускают только в одну сторону.

и изменения угла на глянцевых.

Если что, угол линейной поляризации не изменится при отражении.

Иногда сложно увидеть, какие моменты окажутся сложными и непонятными. Здорово, что комментаторы как @celen добавляют правильности статье.

А что до деталей: это всегда компромисс между тем, насколько надо погрузиться и в какой момент остановиться. Вроде бы не хочется служить учебником по физике тоже, поэтому я стараюсь указывать важные моменты в надежде, что эти кодовые слова укажут, куда смотреть дальше. В частности, в данной статье основная цель была указать, что никакой квантовости не нужно, а не разобрать детально всю физику происходящего.

И отдельный интересный вопрос, как эти фильтры способны на такую магию, но это поди ещё страниц 20...

На самом деле, самый простой поляризатор — просто набор тонких металлических ниток, натянутых в одном направлении. Свет вдоль ниток создает ток электронов в них, и нитки ведут себя как зеркало, отражая большую часть света. Свет с поляризацией поперек не возбуждает никаких электронов и ведет себя как диэлектрик, проходя насквозь. Многие поляризаторы работают на таком же принципе, только на уровне молекул.

Хм, я не очень понимаю. Мы говорим про классическую физику, тут нет никакой квантовости.

Как вы понимаете энергию в данном контексте?

Энергия с физической точки зрения имеет смысл, когда мы говорим о возможности системы выполнить какую-то работу. И там будет иметь смысл только средняя за период энергия, а не мгновенная величина в какой-то точке.

Вы можете посмотреть поток энергии (вектор Поинтинга) в каждой точке волны, он будет обращаться в конкретный момент времени в каком-то месте в ноль. Но зато в других местах он большой — вроде бы обычный волновой процесс.

Энергия определяется для волны на периоде, а за период волна уже "убегает" через точку, где был ноль.

Ну если так рассуждать, то тогда с какого его поляризация меняется, если он проходит? Там всё-таки немного по-другому получается. Переизлучения всякие.

Это два разных вопроса: почему поляризатор вообще вращает поляризацию (и там вам нужно описывать переизлучение и прочее) и качественное описание эксперимента, где известно действие поляризатора на фотон. Для того, чтобы задать квантовую операцию, не обязательно вдаваться в детали того, как именно это происходит.

В чем дело: когда мы говорим об одиночном фотоне не имеет большого смысла говорить о статистике, распределении и т.п.

Не совсем, когда мы говорим об одиночном фотоне, мы его описываем волновой функцией, которая по определению задает статистику измерений. Конечно, любые подобные эксперименты проводятся с большим количеством повторений.

Т.е. речь идёт всё же пусть об очень слабом, но всё же потоке фотонов.

Не обязательно, мы можем буквально испускать одиночные фотоны по нажатию кнопки и повторять эксперимент множество раз.

А раз говорим о потоке, то собственно говоря - какая разница? Какова его
интенсивность? Одиночные фотоны или солнечный свет - результат и
описание будут теми же.

Нет, не теми же. Когда вы берете ансамбль фотонов разом, у вас пропадают все замечательные свойства суперпозиции и прочего квантового. Вы не будете наблюдать никаких нарушений неравенств Белла. Конечно, вы можете использовать матаппарат квантов для вычисления результата в этом случае тоже, но он покажет вам исключительно классически выглядящий результат.

Фундаментально, есть большая разница между одиночными фотонами и слабым лазерным лучом: в их статистике. Лазерный луч следует пуассоновскому распределению. Одиночные фотоны — нет. Поэтому лазерный луч, например, не будет проявлять квантовых эффектов (например, anti-bunching). Поэтому люди так парятся над созданием источников одиночных фотонов, а не просто ставят фильтр для лазерного луча.

Так что ролик не так уж и неправ, я хочу сказать.

Вот видите, в этом вся проблема подобных роликов: в них есть зерно истины, но они мешают мух с котлетами. Они говорят про то, что вы якобы наблюдаете квантовый эффект, который "страннее, чем кажется", и пытаются описывать его через квантовые вычисления. Но это абсолютно неверно: ни один из эффектов, про которые они говорят, не появляется в данном эксперименте, как его ни описывай (классически или квантово).

Ну как-то с электронами это не проблема. Зачем помечать, если мы
постановкой эксперимента можем гарантировать что других фотонов кроме
излучённых нет?

Электроны тоже неразличимы. Я не очень понял тогда, к чему вы, почему вы говорите про "один и тот же фотон".

Все эксперименты (в т.ч.) и по квантовой криптографии, про которые я
читал - либо работают с "лучём" - т.е. потоком фотонов. Либо принимают
отдельные фотоны, от источника, который излучает как хочет.

Некоторые криптоалогритмы действительно могут работать с лучом, но только некоторые. Как я писал выше, в общем случае поток фотонов (слабый луч) не обладает нужной статистикой для использования в квантовых экспериментах. Почитайте про источники одиночных фотонов, 99% всех современных экспериментов с одиночными фотонами работают с ними.

Я совершенно согласен с вами! У меня вообще непопулярное мнение, что научпоп — зло (я даже про это написал целый пост). В современном виде он приносит больше вреда, чем пользы.

У меня сложные отношения с ним. С одной стороны, его часто делают люди, которые реально работают в науке и понимают о чем говорят. С другой стороны, таких людей очень мало, у них малый опыт в этом всем, а конкуренции нет, и в итоге качество очень прыгает от материала к материалу. С третьей стороны, аудитория тоже очень маленькая, так что все держится исключительно на энтузиазме самих авторов и их желании нести свет в массы, а не какой-то материальной поддержке. Это сказывается на качестве тоже, т.к. у авторов нет ответственности за материал (особенно в области проверки фактов).

В общем, в англоязычном научпопе есть ресурсы с гораздо более высоким уровнем, чем в русскоязычном. Но в среднем русскоязычные материалы все же выше качеством.

А вот стало интересно - а можно ли вообще провести такой опыт с одиночными фотонами?

Конечно, проводили много раз.

Ведь через поляризатор не может пройти "полфотона".

Фотон имеет вероятность пройти и не пройти

И в каком смысле одиночными?

Буквально квант энергии заданной длины волны

И вообще хоть раз кто-нибудь проводил эксперимент, чтобы один фотон излучался и он же поглощался?

Это не очень верная постановка вопроса: фотоны с одной энергией неразличимы, их нельзя "пометить". Поэтому мы не можем сказать, это он же излучался или поглощался или нет. Если энергия фотона не изменилась, его считают тем же.

Information

Rating
112-th
Location
Hamburg, Hamburg, Германия
Date of birth
Registered
Activity