• Коллапс волновой функции: алгоритм, вдохновлённый квантовой механикой

    • Translation
    image

    Алгоритм Wave Function Collapse генерирует битовые изображения, локально подобные входному битовому изображению.

    Локальное подобие означает, что

    • (C1) Каждый паттерн NxN пикселей в выходных данных должен хотя бы раз встречаться во входных данных.
    • (Слабое условие C2) Распределение паттернов NxN во входных данных должно быть подобным распределению паттернов NxN в значительно большом количестве наборов выходных данных. Другими словами, вероятность встречи определённого паттерна в выходных данных должна быть близка к плотности таких паттернов во входных данных.
    Читать дальше →
    • +87
    • 19.1k
    • 6
  • О сложности выращивания сакуры: как я участвовал в Ludum Dare 34

      Привет, хабр!

      В данном посте речь пойдет о моем участии в конкурсе Ludum Dare 34, который был около трех недель назад.

      В результате получился пазл под названием Growing Sakura, геймплей которой можно видеть на гифке (не пугайтесь, она весит всего 300Кб):


      Кратко о правилах игры: изначально у нас есть гексагональное поле и несколько корневых бутонов (или один, как на гифке выше). Из него можно пустить 3 ветки (двумя способами — кликая левой или правой кнопкой мыши). Из каждого бутона на ветке левым кликом мыши можно сделать Y-разветвление, а правым — просто продолжить ветку дальше (I-разветвление). Если в каком либо направлении ветка расти не может (соответствующая клетка занята или в нужном направлении нет клетки) — то ветка не растет. В соответствии с последним условием нужно правильно выбирать порядкок «разворачивания» веток. В итоге получится дерево (или несколько деревьев) такое, что между двумя смежными ветками нет острых углов. Цель игры — покрыть все клетки игрового поля.

      Не заглядывая под кат попробуйте подумать секунд 10 и прикинуть, насколько сложной может быть эта игра.
      Читать дальше →
    • «Мы используем лишь 10% от всего мозга» и другие мифы

      • Translation


      Во всех лабораториях, где я работала, упоминание фильма Люка Бессона «Люси» (2014) вызывало широкий спектр реакций, большинство из которых находилось в промежутке от усталого вздоха до плохо скрываемого напряжения вен на лбу. А его даже не все смотрели! Так почему же его так невзлюбили? Сам фильм вполне может быть развлекательным, но при этом он продолжает продвигать миф о том, что мы используем наш мозг лишь на 10% (после увеличения использования мозга до 90% героиня Скарлетт Йохансон научилась телепатии, телекинезу и антигравитации). Меня жутко угнетает зрелище того, как пропагандируют мифы о моей области деятельности. Поэтому я хотела разоблачить некоторые живучие мифы о самой удивительной вещи во Вселенной (ладно, постараюсь без фанатизма).

      1) Мы используем лишь 10% от мощности нашего мозга


      TL;DR: НЕТ нет нет НЕТ НЕТ нет НЕТ!
      Читать дальше →
    • Что интересного я вынес за два года разработки и продвижения мобильной игры

      Привет, Хабр! Давно не виделись… С прошлой публикации — «Чему я научился на своих ошибках или как сделать вторую игру лучше» прошло уже целых 2 года! Сегодня я расскажу о том, что нового я попробовал в продвижении, монетизации приложения и конечно же о том, что из этого вышло.


      Читать дальше →
    • Забытое секретное оружие Unity — UnityEvents

      Ужасающий венерианский комар (фото Ричарда Джонса) Наш отважный герой, случайно забредший в запретную область ядовитых венерианских джунглей, окружён роем из десяти тысяч голодных полуразумных комаров. Вопрос съедобности человека для инопланетных организмов, с научной точки зрения, вообще-то, достаточно спорен — но венерианские комары, как известно, искренне разделяют позицию Маркса, что критерием истинности суждения является эксперимент. Казалось бы, положение безнадёжно — но герой, не растерявшись, извлекает из широких штанин инвентаря походный термоядерный фумигатор, красивым движением включает его, и…


      И на этом моменте разработка игры всерьёз забуксовала, стремительно обрастая костылями и подпорками, поскольку разработчик игры не был знаком с одним маленьким, но крайне важным механизмом движка.


      Механизм, которого не знал разработчик, спящий на клавиатуре после продолжительного спринта по программированию совершенно не нужного по сути своей менеджера управления комарами — это встроенная система событий.

      Читать дальше →
    • Биохакинг мозга: куда располагать электроды, чтобы стать умнее?

        Сейчас в поле зрения общественного внимания попадает всё больше исследований tDCS – транскраниальной стимуляции постоянным током. Довольно большое количество научных работ последних лет демонстрируют, что tDCS может улучшать когнитивные способности не только при лечении болезней, но и у совершенно здоровых людей. Среди них – реакция, внимание, память и обучение иностранным языкам. Успехи научных исследований привлекли внимание DIY сообщества, которое взяло технологию на вооружение и стало активно применять tDCS на себе.

        Однако ключевой момент для проведения электростимуляции – это правильный выбор мест прикрепления электродов к голове. Ведь стимуляция различных зон мозга приводит к принципиально разным когнитивным эффектам – в зависимости от функций этих областей. Поэтому я решил разобраться в научных статьях и выяснить, стимуляция каких зон действительно приводит к ощутимым когнитивным улучшениям и какие подводные камни здесь могут быть.

        Читать дальше →
      • Что такое пространство-время на самом деле?

        • Translation
        • Tutorial

        Перевод поста Стивена Вольфрама "What Is Spacetime, Really?".
        Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации.


        Примечание: данный пост Стивена Вольфрама неразрывно связан с теорией клеточных автоматов и других смежных понятий, а также с его книгой A New Kind of Science (Новый вид науки), на которую из этой статьи идёт большое количество ссылок. Пост хорошо иллюстрирует применение программирования в научной сфере, в частности, Стивен показывает (код приводится в книге) множество примеров программирования на языке Wolfram Language в области физики, математики, теории вычислимости, дискретных систем и др.

        Содержание


        Простая теория всего?
        Структура данных Вселенной
        Пространство как граф
        Может быть, нет ничего, кроме пространства
        Что есть время?
        Формирование сети
        Вывод СТО
        Вывод ОТО (Общей теории относительности)
        Частицы, квантовая механика и прочее
        В поисках вселенной
        Ок, покажите мне Вселенную
        Заниматься физикой или нет — вот в чем вопрос
        Что требуется?
        Но пришло ли время?
        Сто лет назад Альберт Эйнштейн опубликовал общую теорию относительности — блестящую, элегантную теорию, которая пережила целый век и открыла единственный успешный путь к описанию пространства-времени (пространственно-временного континуума).

        Есть много различных моментов в теории, указывающих, что общая теория относительности — не последняя точка в истории о пространстве-времени. И в самом деле, пускай мне нравится ОТО как абстрактная теория, однако я пришел к мысли, что она, возможно, на целый век увела нас от пути познания истинной природы пространства и времени.

        Я размышлял об устройстве пространства и времени немногим более сорока лет. В начале, будучи молодым физиком-теоретиком, я просто принимал эйнштейновскую математическую постановку задачи специальной и общей теории относительности, а так же занимался некоторой работой в квантовой теории поля, космологии и других областях, основываясь на ней.

        Но около 35 лет назад, отчасти вдохновленный своим опытом в технических областях, я начал более детально исследовать фундаментальные вопросы теоретической науки, с чего и начался мой длинный путь выхода за рамки традиционных математических уравнений и использования вместо них вычислений и программ как основных моделей в науке. Вскоре после этого мне довелось выяснить, что даже очень простые программы могут демонстрировать очень сложное поведение, а затем, спустя годы, я обнаружил, что системы любого вида могут быть представлены в терминах этих программ.

        Воодушевившись этим успехом, я стал размышлять, может ли это иметь отношение к важнейшему из научных вопросов — физической теории всего.

        Во-первых, такой подход казался не слишком перспективным — хотя бы потому, что модели, которые я изучал (клеточные автоматы), казалось, работали так, что это полностью противоречило всему тому, что я знал из физики. Но где-то в 88-м году — в то время, когда вышла первая версия Mathematica, я начал понимать, что если бы я изменил свои представления о пространстве и времени, возможно, это к чему то бы меня привело.
        Подробнее о пространственно-временном континууме...
      • Распознавание лиц человеческим мозгом: 19 фактов, о которых должны знать исследователи компьютерного зрения

          Важной целью исследователей в области компьютерного зрения является создание автоматизированной системы, способной сравняться или превзойти способности человеческого мозга по распознаванию лиц. Результаты психофизических исследований процесса распознавания лиц предоставляют специалистам по компьютерному зрению ценнейшие факты, которые помогут улучшить системы искусственного интеллекта.

          Как обычно, предлагаю сокращенный перевод, полный текст доступен в оригинале.

          Читать дальше →
        • Некоторые алгоритмы под капотом мозга

          Некоторое время назад мне захотелось изучить современные материалы по нейробиологии с точки зрения программиста. То есть вытащить из них основные алгоритмы, очистив их от лишних химических/биологических подробностей.

          Так что, если кто-то любит искусственные нейросети и хочет поискать вдохновения в естественных, эта статья может подойти. Все охватить одной статьей, понятно, не удалось — данных уж очень много.
          Читать дальше →
        • Процедурная генерация трёхмерных моделей



            Процедурная генерация — замечательная штука! Интереснее всего работать именно с графикой, особенно трёхмерной — сразу видно результат. Всего пары инструкций достаточно, чтобы создать облако треугольников как на картинке выше.

            Процедурная генерация моделей может помочь сэкономить размер дистрибутива, добавить кастомизацию игровых персонажей, на худой конец её просто можно использовать для создания спецэффектов.

            На примере движка Unity и C# я покажу как можно работать с моделями и превращать текст в графику. Большинство приводимого кода легко портируется на другие фреймфорки и языки.

            Треугольник


            Начнём с простейшей формы — треугольника. В Unity и во многих других движках используется популярный способ описания моделей: с помощью массивов вершин, треугольников и нормалей. Дополнительно для текстурирования используются uv-координаты вершин. Для работы с моделями есть класс Mesh, в котором для каждого набора данных имеется отдельный массив. В Mesh.vertices хранятся координаты вершин, в Mesh.triangles — индексы вершин группами по три. А в Mesh.normals и Mesh.uv лежат векторы нормалей и координаты uv-карт, индексы которых должны совпадать с индексами соответствующих вершин, т. е. порядок в массивах должен быть одинаковым. Покажу на примере, чтобы было понятнее.
            Читать дальше →
            • +17
            • 61.6k
            • 7
          • Логика мышления. Часть 1. Нейрон



              Года полтора назад я выкладывал на Хабр цикл видеолекций с моим видением того как работает мозг и каковы возможные пути создания искусственного интеллекта. За прошедшее с тех пор время удалось существенно продвинуться вперед. Что-то получилось глубже понять, что-то удалось смоделировать на компьютере. Что приятно, появились единомышленники, активно участвующие в работе над проектом.

              В настоящем цикле статей планируется рассказать о той концепции интеллекта над которой мы сейчас работаем и продемонстрировать некоторые решения, являющиеся принципиально новыми в сфере моделирования работы мозга. Но чтобы повествование было понятным и последовательным оно будет содержать не только описание новых идей, но и рассказ о работе мозга вообще. Какие-то вещи, особенно в начале, возможно покажутся простыми и общеизвестными, но я бы советовал не пропускать их, так как они во многом определяют общую доказательность повествования.
              Читать дальше →