Pull to refresh
5
0
Алексей Ульянов @cohr

Цифровая трансформация, управление проектами

Send message

Сам себе Росстат

Level of difficultyMedium
Reading time4 min
Views3.6K

Начало тут

Руководящие документы по организации первичной медико-социальной помощи населению предписывают проводить сравнительный анализ численности населения по территориальным участкам (норматив численности населения на терапевтическом участке - 1700 взрослых, на педиатрическом участке - 800 детей, на акушерско-гинекологическом участке - 3300 женщин в возрасте 15 лет и старше и т.д.) .

Оценку численности населения по субъектам РФ Росстат публикует ежегодно на 1 января текущего года. Для крупных городов территории обслуживания населения медицинскими организациями часто не совпадают с адресно административным делением и распределение населения по зонам ответственности медицинской организации становится скорее творчеством нежели технологической процедурой. Вопрос как декомпозировать данные из бюллетеня Росстата до медицинского участка для меня остается нерешенным.

Мы пойдем другим путем. Данные о населении мы можем получить из медицинской информационной системы (МИС). База МИС обогащается на регулярной основе данными страховых компаний о застрахованных лицах по программе обязательного медицинского страхования (ОМС).

Для работы нам понадобится обезличенная выгрузка из МИС, содержащая данные по пациентам: пол, дату рождения, адрес регистрации, адрес фактического места жительства, данные медицинской организации и номера участка по терапевтическому или педиатрическому профилю. Я загрузил ее в pandas.dataframe.

Читать далее
Total votes 7: ↑7 and ↓0+7
Comments10

Геопространственные технологии для управления паспортом медицинского участка

Level of difficultyMedium
Reading time8 min
Views2.4K

Все началось с голосовых роботов. Во время борьбы с Ковидом наш коллцентр, носящий теперь гордое имя Центр телефонного обслуживания граждан 122, все чаще и чаще выстраивал очереди со временем ожидания ответа оператора свыше 30 минут. Нанять больше людей и начать стабильно укладываться в норматив ответа оператора менее 3-х минут не позволяли размеры помещения и фонда оплаты труда.

Стали пробовать решения для автоматизации контакт центров, которые можно было бы интегрировать с медицинской информационной системой (МИС). За 3 месяца пилотирования NLP продукта и его интеграции действующие в бизнес-процессы удалось добиться вменяемых результатов по распознаванию номеров медицинских полисов, адресов проживания и имени пациентов. Даже удалось удержать среднее время обслуживания одного звонка на уровне 100 секунд… Однако процент автоматических обслуженных обращений болтался в диапазоне от 11 до 30 процентов, и пациенты продолжали томится в ожидании ответа оператора.                      

Виной низкой эффективности проекта роботизации коллцентра послужило состояние адресной базы МИС и серьезные различия в бизнес правилах бюджетных медицинских учреждений. Мы с вами часто меняем место жительства и ни перед кем за это не отчитываемся. Строительные компании увлечены реновацией и на месте ветхих бараков, гаражных кооперативов или промышленных пустошей появляются многоэтажки, о заселении которых медицинские организации узнают по телефону, когда нам требуется врач. Про оперативное информационное взаимодействие органов внутренних дел, управлений архитектуры и органов охраны здоровья остается только мечтать.

Читать далее
Total votes 8: ↑7 and ↓1+11
Comments6

Information

Rating
Does not participate
Location
Челябинск, Челябинская обл., Россия
Registered
Activity

Specialization

Data Analyst, Chief information officer (CIO)
Linux
PostgreSQL
Python