Pull to refresh
2
0
Баходир @helThazar

User

Send message

Теория графов в Игре Престолов

Reading time 19 min
Views 65K


Недавно, на Geektimes я опубликовал статью, где привёл немного поверхностной статистики из серии книг «Песнь льда и пламени». Но я не стал углубляться в самую интересную часть, в граф социальных связей, ибо тема заслуживает отдельного внимания. В этой статье я продемонстрирую как теория графов может помочь при анализе подобных данных и приведу реализации алгоритмов, которыми я пользовался.

Всем кому интересно, добро пожаловать под кат.
Читать дальше →
Total votes 61: ↑55 and ↓6 +49
Comments 37

«Непредвзятый» универсальный алгоритмический интеллект (часть 2)

Reading time 18 min
Views 14K

LSearch и ξtl


В предыдущей части ( http://habrahabr.ru/post/150056/ ) мы рассмотрели базовые модели «непредвзятого» универсального алгоритмического интеллекта, которые мы назвали идеальным минимальным интеллектом (ИМИ), поскольку эти модели, не будучи ориентированными на какой-то класс сред, являются максимально компактными. Однако понятно, что они являются далеко не достаточными для создания реального ИИ.
Читать дальше →
Total votes 15: ↑11 and ↓4 +7
Comments 0

Университет MIT выложил бесплатно лекции в Сеть

Reading time 1 min
Views 150K


Один из лучших технологических вузов мира опубликовал большинство своих обучающих курсов, лекций и семинаров в интернете на отдельном ресурсе.

Есть аудио и видео-курсы, поиск по каталогу, по номеру курса, по наименованию дисциплины, все предметы и степень сложности разделены в отдельные рубрики.
Читать дальше →
Total votes 157: ↑116 and ↓41 +75
Comments 40

Поиск гамильтонова цикла в большом графе (задача коммивояжера).Часть 2

Reading time 3 min
Views 25K
В продолжение к моей первой статье решил написать эту, в которой расскажу про более продвинутые алгоритмы поиска гамильтонова цикла в большом полном графе
Читать дальше →
Total votes 16: ↑15 and ↓1 +14
Comments 3

Дерево Фенвика для максимума

Reading time 2 min
Views 16K
Про дерево Фенвика многие знают. Многие его используют. Однако считается, что деревом Фенвика нельзя находить максимум/минимум.
Мол, эта операция не имеет обратной. Однако небольшие изменения алгоритма позволяют нам решить и эту задачу тоже.
NB: Статья написана для тех, кто знает, что такое дерево Фенвика и описывает его модификацию для максимума.Тем, кто не знает, что такое дерево Фенвика, рекомендуется прочитать об этом где-нибудь, хоть в Кормене, хоть в статье на хабре.
Читать дальше →
Total votes 14: ↑10 and ↓4 +6
Comments 9

Две простенькие задачи на Haskell (для начинающих)

Reading time 5 min
Views 18K
Приветствую всех пользователей Хабрахабр!
Я недавно начал изучать Haskell, и, немного освоив его, решил поделиться небольшим накопленным опытом. Конечно же, знания Haskell у меня не на таком уровне как у Darkus, поэтому две задачи, которые описаны ниже, ориентированны больше на новичков, но опытные пользователи возможно и поправят, и подскажут как лучше сделать. Эта не только моя первая статья на Хабрахабр, но и вообще мой первый туториал, который я когда-либо писал.
Читать дальше →
Total votes 25: ↑21 and ↓4 +17
Comments 6

Вычисление значения выражения

Reading time 7 min
Views 47K
В продолжение поста Компилятор выражений. По просьбам читающих. Специально для michurin

Есть много способов вычислить значение выражения мне больше всего нравится метод с двумя стеками.
Нравится за его элегантность и простоту реализации.

Суть метода 2х стеков (наверняка у него есть красивое научное название.) заключается в том, что любое сложно выражение, в конечном счете, сводится к последовательности простых операций. В нашем случае это будет бинарная операция над операндами A и В.

Мы будем идти слева на право, добавляя операнды в один стек, а операции в другой. При каждом добавлении новой операции мы будем пытаться вытолкнуть из стека старые, руководствуясь приоритетами операций.
Читать дальше →
Total votes 59: ↑55 and ↓4 +51
Comments 36

Prett Parsing — метод Вогана Пратта для разбора выражений

Reading time 3 min
Views 5.4K
В тему компиляций и вычислений выражений.

В далёком 1973 году Воган Прэтт (Vaughan Pratt) предложил простой и эффективный метод разбора выражений, не использующий ни автоматы, ни грамматику как таковую.

Идея заключается в том, что каждый символ (token) наделяется свойствами:
lbp = приоритет связывания символа слева,
nud = функция, определяющая результат применения оператора в начале выражения,
led = функция, определяющая результат применения в середине выражения.

Основной разбор осуществляется по схеме:
разбор(приоритет продолжения):
    вытолкнуть символ из входного потока
    результат = вызов nud этого символа
    пока приоритет lbp следующего в потоке символа > приоритета продолжения:
        вытолкнуть символ из входного потока
        результат = применени led этого символа к текущему результату

Константы и переменные имеют приоритет связывания 0, а функция nud возвращает их значение (или ссылку). Поэтому применение разбора к константам сразу возратит их значение.
Для бинарных операторов функция led рекурсивно вызывает продолжение разбора (справа) вплоть до более низкого приоритета, и делает что-нибудь с уже накопленым (слева) результатом, и полученным рекурсивно.
Результат применения оператора аггрегируется для внешнего вызова.
Много-арные операторы — получают аргументы дополнительным вызовом функции разбора.
Префиксные операторы делаются с помощью определения для них функции nud.
Для правостороннего связывания меняется приоритет продолжения рекурсивного разбора.

На сайте effbot.org приводится подробная реализация на питоне.
Там же есть ссылки для жаваскрипта и схемы.
наглядный пример на питоне
Total votes 38: ↑36 and ↓2 +34
Comments 15

Максимальный поток минимальной стоимости

Reading time 15 min
Views 83K
Транспортная задача (классическая) — задача об оптимальном плане перевозок товара со складов в пункты потребления на транспортных средствах.

Для классической транспортной задачи выделяют два типа задач: критерий стоимости (достижение минимума затрат на перевозку) или расстояний и критерий времени (затрачивается минимум времени на перевозку).

Под катом очень-очень много текста, т.к. рассказывается один из вариантов решения данной задачи «в картинках» для тех, кто мало знаком с графами. Листинг прилагается.

Путешествие в тысячу миль начинается с первого шага
Total votes 173: ↑165 and ↓8 +157
Comments 76

Задача о назначениях

Reading time 12 min
Views 80K

Задача о наилучшем распределении некоторого числа работ между таким же числом исполнителей. При ее решении ищут оптимальное назначение из условия максимума общей производительности, которая равна сумме производительности исполнителей. Наиболее эффективным методом ее решения является венгерский метод. Задача о назначениях имеет много интерпретаций: распределение работ между механизмами, распределение целей между огневыми средствами для максимизации математического ожидания числа пораженных целей или среднего ущерба и т.д.

Give us the tools, and we will finish the job
Total votes 60: ↑57 and ↓3 +54
Comments 34

Квадрарный поиск

Reading time 2 min
Views 14K
Тернарный (или троичный) поиск — это алгоритм поиска минимума (или максимума) выпуклой функции на отрезке. Можно искать минимум (максимум) функции от вещественного аргумента, можно минимум (максимум) на массиве. Будем, для определённости, искать минимум функции f(x).

Он многим знаком, а для тех, кто не знает, расскажу вкратце.

Тернарный поиск заключается в следующем. Пусть есть рекурсивная функция search(L, R), которая по двум концам отрезка L, R определяет минимум на орезке [L, R]. Если R — L < eps, то мы уже вычислили точку, где достигается минимум, с точностью eps. Иначе, разделим отрезок [L,R] на три равных по длине отрезка [L, A], [A, B] и [B, R]. Сравним значение в точках А и В. Вспомнив, что функция f выпуклая, можно сделать вывод, что если f(A) > f(B), то минимум лежит на отрезке [A,R]. Иначе — на отрезке [L, B]. В соответсвии с этим, можно рекурсивно запуститься от одного из отрезков [L, B] или [A, R]. Каждый раз длина области поиска уменьшается в полтора раза, значит, минимум на отрезке длины X с точностью eps будет найден за время O(log(X/eps)).

А здесь я хочу рассказать о квадрарном (или четверичном) поиске.

Читать дальше →
Total votes 29: ↑26 and ↓3 +23
Comments 6

Алгоритмы поиска старшего бита

Reading time 3 min
Views 39K
Здесь я хочу рассказать и обсудить несколько алгоритмов для нахождения старшего единичного бита числа.

На всякий случай, поясню: старшим битом называется единичный бит числа, отвечающий за самую большую степень двойки. Иными словами, это самая большая степень двойки, не превосходящая числа. Чтобы избежать многих случаев, будем здесь считать, что мы имеем дело с натуральным числом в пределах от 1 до 2^31 — 1 включительно. Кроме того, чтобы не слишком углубляться в теорию вероятности, будем считать, что число, в котором требуется определить старший бит, с одинаковой вероятностью будет любым из возможных чисел.

Для начала, рассмотрим самый простой, первым приходящий в голову алгоритм. Давайте переберём все степени двойки, и выберем из них максимальную, которая не превосходит числа. Здесь, очевидно, можно воспользоваться монотонностью этого свойства, то есть тем, что если какая-то степень двойки не превосходит числа, то и меньше степени и подавно не превосходят. Поэтому, это метод можно написать очень просто:

int bit1(int x) {
   int t = 1 << 30;
   while (x < t) t >>= 1;
   return t;
}


Читать дальше →
Total votes 73: ↑55 and ↓18 +37
Comments 101

Топологическая сортировка

Reading time 3 min
Views 137K
Топологическая сортировка (Topological sort) — один из основных алгоритмов на графах, который применяется для решения множества более сложных задач.
Задача топологической сортировки графа состоит в следующем: указать такой линейный порядок на его вершинах, чтобы любое ребро вело от вершины с меньшим номером к вершине с большим номером. Очевидно, что если в графе есть циклы, то такого порядка не существует.
Ориентированной сетью (или просто сетью) называют бесконтурный ориентированный граф. В задачах подобного плана рассматриваются только конечные сети.
image
↑ Пример ориентированного неотсортированного графа, к которому применима топологическая сортировка
Далее про алгоритм, реализацию и применение..
Total votes 72: ↑62 and ↓10 +52
Comments 26

Методы применения алгоритма нахождения максимального потока в сети

Reading time 7 min
Views 47K

Введение


Задача о максимальном потоке является классической и имеет множество применений. Напомню постановку проблемы. Дан взвешенный ориентированный граф с неотрицательными весами (пропускными способностями). Выделены две вершины: исток S и сток T такие, что любая другая вершина лежит на пути из S в T. Потоком назовем функцию F: V x V с такими свойствами
  1. Ограничение пропускной способности. Поток по ребру не может быть больше его (ребра) пропускной способности.
  2. Антисимметричность. Для каждого ребра (u, v): F(u, v) = -F(v, u).
  3. Сохранение потока. Для каждой вершины (кроме S и T), количество входящего потока (отрицательного) равен количеству исходящего потока (положительного). Тоесть, алгебраическая сумма потоков для каждой вершины (кроме S и T) равна нулю.

В этом посте вы можете ознакомиться с реализацией поставленной проблемы.

Перейдем непосредственно к типичным задачам, которые сводятся к алгоритму нахождения максимального потока в сети. Часто выявить в таких задачах поток очень не просто.

Читать дальше →
Total votes 44: ↑41 and ↓3 +38
Comments 14

Декартово дерево: Часть 2. Ценная информация в дереве и множественные операции с ней

Reading time 14 min
Views 39K

Оглавление (на данный момент)


Часть 1. Описание, операции, применения.
Часть 2. Ценная информация в дереве и множественные операции с ней.
Часть 3. Декартово дерево по неявному ключу.
To be continued...

Тема сегодняшней лекции


В прошлый раз мы с вами познакомились — скажем прямо, очень обширно познакомились — с понятием декартового дерева и основным его функционалом. Только до сих мы с вами использовали его одним-единственным образом: как «квази-сбалансированное» дерево поиска. То есть пускай нам дан массив ключей, добавим к ним случайно сгенерированные приоритеты, и получим дерево, в котором каждый ключ можно искать, добавлять и удалять за логарифмическое время и минимум усилий. Звучит неплохо, но мало.

К счастью (или к сожалению?), реальная жизнь такими пустяковыми задачами не ограничивается. О чем сегодня и пойдет речь. Первый вопрос на повестке дня — это так называемая K-я порядковая статистика, или индекс в дереве, которая плавно подведет нас к хранению пользовательской информации в вершинах, и наконец — к бесчисленному множеству манипуляций, которые с этой информацией может потребоваться выполнять. Поехали.

Ищем индекс


В математике, K-я порядковая статистика — это случайная величина, которая соответствует K-му по величине элементу случайной выборки из вероятностного пространства. Слишком умно. Вернемся к дереву: в каждый момент времени у нас есть декартово дерево, которое с момента его начального построения могло уже значительно измениться. От нас требуется очень быстро находить в этом дереве K-й по порядку возрастания ключ — фактически, если представить наше дерево как постоянно поддерживающийся отсортированным массив, то это просто доступ к элементу под индексом K. На первый взгляд не очень понятно, как это организовать: ключей-то у нас в дереве N, и раскиданы они по структуре как попало.

Решение и вся статья - под катом
Total votes 76: ↑72 and ↓4 +68
Comments 14

Декартово дерево: Часть 3. Декартово дерево по неявному ключу

Reading time 12 min
Views 55K

Оглавление (на данный момент)


Часть 1. Описание, операции, применения.
Часть 2. Ценная информация в дереве и множественные операции с ней.
Часть 3. Декартово дерево по неявному ключу.
To be continued...

Очень сильное колдунство


После всей кучи возможностей, которые нам предоставило декартово дерево в предыдущих двух частях, сегодня я совершу с ним нечто странное и кощунственное. Тем не менее, это действие позволит рассматривать дерево в совершенно новой ипостаси — как некий усовершенствованный и мощный массив с дополнительными фичами. Я покажу, как с ним работать, покажу, что все операции с данными из второй части сохраняются и для модифицированного дерева, а потом приведу несколько новых и полезных.

Вспомним-ка еще раз структуру дерамиды. В ней есть ключ x, по которому дерамида есть дерево поиска, случайный ключ y, по которому дерамида есть куча, а также, возможно, какая-то пользовательская информация с (cost). Давайте совершим невозможное и рассмотрим дерамиду… без ключей x. То есть у нас будет дерево, в котором ключа x нет вообще, а ключи y — случайные. Соответственно, зачем оно нужно — вообще непонятно :)

На самом деле расценивать такую структуру стоит как декартово дерево, в котором ключи x все так же где-то имеются, но нам их не сообщили. Однако клянутся, что для них, как полагается, выполняется условие двоичного дерева поиска. Тогда можно представить, что эти неизвестные иксы суть числа от 0 до N-1 и неявно расставить их по структуре дерева:

Получается, что в дереве будто бы не ключи в вершинах проставлены, а сами вершины пронумерованы. Причем пронумерованы в уже знакомом с прошлой части порядке in-order обхода. Дерево с четко пронумерованными вершинами можно рассматривать как массив, в котором индекс — это тот самый неявный ключ, а содержимое — пользовательская информация c. Игреки нужны только для балансировки, это внутренние детали структуры данных, ненужные пользователю. Иксов на самом деле нет в принципе, их хранить не нужно.

В отличие от прошлой части, этот массив не приобретает автоматически никаких свойств, вроде отсортированности. Ведь на информацию-то у нас нет никаких структурных ограничений, и она может храниться в вершинах как попало.
Если интересно - под кат
Total votes 81: ↑77 and ↓4 +73
Comments 17

Быстрая сборка кубика Рубика

Reading time 7 min
Views 982K
Возможно, многие из читателей задавались вопросом, как людям удаётся собирать кубик Рубика 3×3 за 7 секунд. Если даже предположить, что рекордсмену сильно повезло, то таблица мирового рейтинга по среднему из пяти результатов уже не оставляет сомнений: если больше 80 человек в среднем укладываются в 12 секунд, очевидно они что-то знают. В этом кратком обзоре я постараюсь приоткрыть секреты скоростной сборки. Сразу оговорюсь, что после прочтения этой статьи вы не станете чемпионами: здесь приведены только основные моменты и ссылки на более подробную информацию. Кроме того, даже после изучения метода полностью вам потребуются долгие тренировки для достижения хороших результатов. Зато вы получите неплохое представление о том, как это делается, и при желании будете знать, куда двигаться дальше. Я думаю, при достаточной усидчивости после нескольких месяцев тренировок многие смогут достичь среднего результата в районе 30 секунд.
Читать дальше →
Total votes 115: ↑102 and ↓13 +89
Comments 77

Декартово дерево: Часть 1. Описание, операции, применения

Reading time 15 min
Views 149K

Оглавление (на данный момент)


Часть 1. Описание, операции, применения.
Часть 2. Ценная информация в дереве и множественные операции с ней.
Часть 3. Декартово дерево по неявному ключу.
To be continued...

Декартово дерево (cartesian tree, treap) — красивая и легко реализующаяся структура данных, которая с минимальными усилиями позволит вам производить многие скоростные операции над массивами ваших данных. Что характерно, на Хабрахабре единственное его упоминание я нашел в обзорном посте многоуважаемого winger, но тогда продолжение тому циклу так и не последовало. Обидно, кстати.

Я постараюсь покрыть все, что мне известно по теме — несмотря на то, что известно мне сравнительно не так уж много, материала вполне хватит поста на два, а то и на три. Все алгоритмы иллюстрируются исходниками на C# (а так как я любитель функционального программирования, то где-нибудь в послесловии речь зайдет и о F# — но это читать не обязательно :). Итак, приступим.

Введение


В качестве введения рекомендую прочесть пост про двоичные деревья поиска того же winger, поскольку без понимания того, что такое дерево, дерево поиска, а так же без знания оценок сложности алгоритма многое из материала данной статьи останется для вас китайской грамотой. Обидно, правда?

Следующий пункт нашей обязательной программы — куча (heap). Думаю, также многим известная структура данных, однако краткий обзор я все же приведу.
Представьте себе двоичное дерево с какими-то данными (ключами) в вершинах. И для каждой вершины мы в обязательном порядке требуем следующее: ее ключ строго больше, чем ключи ее непосредственных сыновей. Вот небольшой пример корректной кучи:


На заметку сразу скажу, что совершенно не обязательно думать про кучу исключительно как структуру, у которой родитель больше, чем его потомки. Никто не запрещает взять противоположный вариант и считать, что родитель меньше потомков — главное, выберите что-то одно для всего дерева. Для нужд этой статьи гораздо удобнее будет использовать вариант со знаком «больше».

Сейчас за кадром остается вопрос, каким образом в кучу можно добавлять и удалять из нее элементы. Во-первых, эти алгоритмы требуют отдельного места на осмотр, а во-вторых, нам они все равно не понадобятся.
А теперь собственно про декартово дерево
Total votes 166: ↑161 and ↓5 +156
Comments 30

Система непересекающихся множеств и её применения

Reading time 10 min
Views 69K
Добрый день, Хабрахабр. Это еще один пост в рамках моей программы по обогащению базы данных крупнейшего IT-ресурса информацией по алгоритмам и структурам данных. Как показывает практика, этой информации многим не хватает, а необходимость встречается в самых разнообразных сферах программистской жизни.
Я продолжаю преимущественно выбирать те алгоритмы/структуры, которые легко понимаются и для которых не требуется много кода — а вот практическое значение сложно недооценить. В прошлый раз это было декартово дерево. В этот раз — система непересекающихся множеств. Она же известна под названиями disjoint set union (DSU) или Union-Find.

Условие


Поставим перед собой следующую задачу. Пускай мы оперируем элементами N видов (для простоты, здесь и далее — числами от 0 до N-1). Некоторые группы чисел объединены в множества. Также мы можем добавить в структуру новый элемент, он тем самым образует множество размера 1 из самого себя. И наконец, периодически некоторые два множества нам потребуется сливать в одно.

Формализируем задачу: создать быструю структуру, которая поддерживает следующие операции:

MakeSet(X) — внести в структуру новый элемент X, создать для него множество размера 1 из самого себя.
Find(X) — возвратить идентификатор множества, которому принадлежит элемент X. В качестве идентификатора мы будем выбирать один элемент из этого множества — представителя множества. Гарантируется, что для одного и того же множества представитель будет возвращаться один и тот же, иначе невозможно будет работать со структурой: не будет корректной даже проверка принадлежности двух элементов одному множеству if (Find(X) == Find(Y)).
Unite(X, Y) — объединить два множества, в которых лежат элементы X и Y, в одно новое.

На рисунке я продемонстрирую работу такой гипотетической структуры.


Как такое сделать и зачем оно нужно
Total votes 114: ↑109 and ↓5 +104
Comments 29

Алгоритм Флойда — Уоршелла

Reading time 6 min
Views 165K
Алгоритм Флойда — Уоршелла — алгоритм для нахождения кратчайших расстояний между всеми вершинами взвешенного графа без циклов с отрицательными весами с использованием метода динамического программирования. Это базовый алгоритм, так что тем кто его знает — можно дальше не читать.

Этот алгоритм был одновременно опубликован в статьях Роберта Флойда (Robert Floyd) и Стивена Уоршелла (Stephen Warshall) в 1962 г., хотя в 1959 г. Бернард Рой (Bernard Roy) опубликовал практически такой же алгоритм, но это осталось незамеченным.
Читать дальше →
Total votes 132: ↑126 and ↓6 +120
Comments 33

Information

Rating
Does not participate
Location
Ташкент, Ташкентская обл., Узбекистан
Date of birth
Registered
Activity