Сегодня мы рады представить Вам заключительный вебинар из цикла лекций об искусственном интеллекте, который посвящен вопросам внедрения Legal AI в практическую деятельность юристов и актуальным трендам из мира искусственного интеллекта.
Legal AI Developer
Искусственный интеллект в юриспруденции. Вебинар № 3: Архитектура Legal AI
Продолжая цикл вебинаров об искусственном интеллекте для юристов, мы предлагаем поговорить об архитектуре Legal AI, а именно: о технологической основе, о задачах, которые необходимо решить при разработке подобных решений, а также о том, как данные задачи могут быть решены сегодня.
Искусственный интеллект в юриспруденции. Вебинар № 2: Обзор актуальных LegalTech-решений
Сегодня мы продолжаем цикл вебинаров об искусственном интеллекте в юриспруденции и хотели бы поговорить о том, как выглядит рынок LegalTech и какие решения доступны уже сейчас.
Искусственный интеллект в юриспруденции. Вебинар № 1: Обзор последних достижений в области AI
Сегодня тема искусственного интеллекта продолжает набирать популярность. Мы слышим новости и упоминания о ней практически во всех СМИ, однако найти по-настоящему содержательную информацию не так просто. Мы решили продолжить развитие данной темы и открываем цикл вебинаров об искусственном интеллекте в юриспруденции.
Искусственный интеллект в области юриспруденции. Часть 4
В продолжение цикла статей мы решили выложить на Хабр запись недавнего мероприятия Moscow Legal Hackers, посвященного теме создания юридического ИИ.
Основные вопросы мероприятия:
- зачем в юриспруденции ИИ? какие есть боли и проблемы?
- как на архитектурном уровне выглядит юридический ИИ?
- какие задачи нужно решить, чтобы успешно внедрить ИИ?
- бонусом небольшой экскурс в историю нейронных сетей.
Картинка для привлечения внимания:
Представь что ты будешь знать завтра, когда заработает юридический ИИ.
Полное видео и таймкоды записи — под катом:
Искусственный интеллект в области юриспруденции. Статья 3
Введение
Мы продолжаем цикл статей на тему юридического искусственного интеллекта, аспектов его разработки и перспектив практического применения на отечественном рынке. В предыдущих публикациях мы неоднократно говорили, что, по нашему мнению, разработка Legal AI может быть обеспечена с помощью создания и применения нового семантического блока, включающего в себя:
- инструменты лингвистического анализа текстов на естественном языке;
- структурированную модель юридических знаний (графы знаний и онтологии);
- предобученные нейронные сети.
В первой статье мы детально исследовали существующие инструменты процессинга русскоязычного текста. Во второй статье мы рассмотрели подходы к созданию продуктов на основе искусственного интеллекта, а также вопросы взаимодействия специалистов в области IT и юриспруденции. В настоящей статье мы предлагаем погрузиться в тему онтологий и ответить на следующие вопросы:
- Какова роль онтологий в процессе создания искусственного интеллекта?
- Почему существующие онтологии в области права неприменимы для Legal AI, несмотря на многолетние попытки зарубежных специалистов структурировать юридические знания?
- Какими свойствами должны обладать онтологии для Legal AI, чтобы решать практические задачи?
Искусственный интеллект в области юриспруденции. Статья 2
Введение
Анализ актуальной в настоящее время темы искусственного интеллекта и его применения в области юриспруденции мы начали с обзора инструментов синтаксического и семантического анализа текстов, которые применяются при разработке LegalTech-решений.
В комментариях к предыдущей статье красной нитью проходил очень непростой вопрос: а почему бы не извлекать из текста все имеющиеся в нем смыслы? В чем здесь сложность? Такой вопрос — крайне показателен, поэтому мы решили уделить ему более пристальное внимание и дать максимально развернутый ответ.
Искусственный интеллект в области юриспруденции
Введение
Тема искусственного интеллекта сегодня — одна из самых обсуждаемых. Перспектива «обеспечить монополию в сфере искусственного интеллекта и стать властелином мира» заставила всех соревноваться в данной области. IT-гиганты, финансовые компании, бизнес-аналитики, университеты и научное сообщество предлагают собственное видение инструментов и методологии решения основных задач при их создании. Однако результаты удручают, особенно в сфере LegalTech.
Что такое настоящий LegalTech, а что скрывается под громкими рекламными слоганами? Почему никому из IT-разработчиков не удалось создать действительно прорывной и функциональный продукт, близкий к цифровому юристу? Какой подход позволил нам решить данные задачи и существенно приблизиться к созданию настоящего юридического искусственного интеллекта?
Всё, о чём должен знать разработчик Телеграм-ботов

Вы вряд ли найдете в интернете что-то про разработку ботов, кроме документаций к библиотекам, историй "как я создал такого-то бота" и туториалов вроде "как создать бота, который будет говорить hello world". При этом многие неочевидные моменты просто нигде не описаны.
Как вообще устроены боты? Как они взаимодействуют с пользователями? Что с их помощью можно реализовать, а что нельзя?
Подробный гайд о том, как работать с ботами — под катом.
Open Source синтез речи SOVA
Всем привет! Ранее мы выкладывали статью про наше распознавание речи, сегодня мы хотим рассказать вам о нашем опыте по созданию синтеза речи на русском языке, а также поделиться ссылками на репозитории и датасеты для свободного использования в любых целях.

Если вам интересна история о том, как мы разработали собственный сервис синтеза речи и каких результатов нам удалось достигнуть, то добро пожаловать под кат.
Проект Natasha. Набор качественных открытых инструментов для обработки естественного русского языка (NLP)
Проект подрос, библиотека теперь решает все базовые задачи обработки естественного русского языка: сегментация на токены и предложения, морфологический и синтаксический анализ, лемматизация, извлечение именованных сущностей.

Для новостных статей качество на всех задачах сравнимо или превосходит существующие решения. Например с задачей NER Natasha справляется на 1 процентный пункт хуже, чем Deeppavlov BERT NER (F1 PER 0.97, LOC 0.91, ORG 0.85), модель весит в 75 раз меньше (27МБ), работает на CPU в 2 раза быстрее (25 статей/сек), чем BERT NER на GPU.
В проекте 9 репозиториев, библиотека Natasha объединяет их под одним интерфейсом. В статье поговорим про новые инструменты, сравним их с существующими решениями: Deeppavlov, SpaCy, UDPipe.

Бизнес-процессы на прокачку: как Process Intelligence помогает компаниям определить, что, где и когда автоматизировать

Как вы, возможно, слышали, в прошлом году ABBYY приобрела компанию TimelinePI – разработчика платформ Process Intelligence. Теперь, помимо интеллектуальной обработки информации, продукты ABBYY помогают компаниям решать новый класс задач – анализировать бизнес-процессы, понимать, как они устроены изнутри и как их изменить в лучшую сторону.
Для нас это логичный шаг. В недрах крупных компаний непрерывно генерируются и обрабатываются огромные объемы данных. Наши решения для корпоративных заказчиков помогают приводить в структурированный вид разнообразные сведения из бухгалтерских, кадровых, логистических и других документов и удобнее работать с ними. А почему бы не только упорядочивать информацию, но и делать на ее основе полезные выводы для бизнеса? Например, понимать, как устроены процессы, выявлять в них неочевидные закономерности, анализировать те метрики, которые раньше не учитывали, да еще и предсказывать, что будет, если автоматизировать процессы с помощью той или иной технологии?
Сегодня мы расскажем, что такое платформа для интеллектуального анализа бизнес-процессов ABBYY Timeline, для чего она нужна, и приведем примеры, как это решение работает и где оно полезно.
Юридические эксперименты в ИТ. Как кастомизировать закон под себя

Похоже, власти прислушались к жалобам бизнеса на неудобные законы и приняли закон об экспериментальных правовых режимах в сфере цифровых инноваций (Федеральный закон от 31.07.2020 № 258-ФЗ). По сути государство говорит нам: «Вам не нравится действующее регулирование? Окей, придумайте свои законы, которые вас устроят. Мы на время сделаем их обязательными для вас и других желающих и посмотрим, как они работают. Если эксперимент пройдет хорошо, то сделаем из вашей идеи полноценный закон, обязательный для всех».
Давайте рассмотрим, кому от нового закона станет удобнее и в чем его особенности.
Поехали!
Спасти рядового датасайнтиста. Как работать над компьютерным зрением, чтобы сделать проект и не потерять себя

Меня зовут Александра Царева. Я и мои коллеги работаем над проектами в сфере компьютерного зрения в Центре машинного обучения компании «Инфосистемы Джет». Мне хочется поделиться нашим опытом разработки и внедрения проектов в сфере компьютерного зрения.
В этом материале я расскажу о том, как выглядит процесс работы датасайнтиста над проектом не с «духовной» и, собственно, датасайнтистской точки зрения, а больше с организационной. И надеюсь, что за этим постом последует еще несколько и удастся написать небольшую серию.
Сразу оговорю два важных пункта:
- Эти шаги касаются практически любого датасайнс-проекта. Но некоторые моменты вызваны эффектом хайпа вокруг CV, некоторой славой «серебряной пули» у компьютерного зрения и желанием заказчика, «чтоб было с нейросетью».
- Я говорю о том, что эти шаги в первую очередь проходит сам датасайнтист, но некоторые из них хочется делегировать — менеджеру проекта, бизнес-аналитику или иному коллеге. С моей точки зрения, стоит исходить из предпосылки, что этого коллеги или нет (маленькая компания, другая структура работы и т.п.) или он в любом случае не знает так хорошо ограничения машинного обучения и нейросетей, как профильный специалист — то есть нуждается в консультации и совместном разборе каких-то вопросов.
Как команде технарей построить свой стартап, или путь из функционального мониторинга к AIOps-платформе
Три месяца назад я опубликовал историю про то, как не получилось из проекта сделать продукт, как он обратно превратился в проект и так и не вышел на рынок (прочитать об этом можно тут).
Второй подход к снаряду начался несколько лет назад, и пока полет нормальный. Уже есть клиенты, выручка, призовые места на международных конкурсах, интерес со стороны инвесторов. Историю развития продукта я бы хотел рассказать в этой статье. А также поделиться уроками, которые были выучены во время забега к продукту. Эта статья будет интересна и тем, кто строит продукт, и тем, кто занимается мониторингом в крупной организации. Так как мы строим именно систему для автоматизации, зонтичного мониторинга, функционального мониторинга и предиктивной аналитики.
Люди ломаются на логике, роботы — на всем понемногу. Экзамены по русскому для NLP-моделей

Чтобы корректнее обучать свою модель для русского или другого языка и адаптировать её, хорошо бы иметь какие-то объективные метрики. Их существует не так много, а для нашей локали и вовсе не было. Но мы их сделали, чтобы продолжить развитие русских моделей для общей задачи General Language Understanding.
Мы — это команда AGI NLP Сбербанка, лаборатория Noah’s Ark Huawei и факультет компьютерных наук ВШЭ. Проект Russian SuperGLUE — это набор тестов на «понимание» текста и постоянный лидерборд трансформеров для русского языка.
Information
- Rating
- Does not participate
- Registered
- Activity