Search
Write a publication
Pull to refresh
2
0
joger @joger

User

Send message

Робот-тележка на ROS.Часть 1. Железо

Reading time3 min
Views19K
Посты серии:
8. Управляем с телефона-ROS Control, GPS-нода
7. Локализация робота: gmapping, AMCL, реперные точки на карте помещения
6. Одометрия с энкодеров колес, карта помещения, лидар
5. Работаем в rviz и gazebo: xacro, новые сенсоры.
4. Создаем симуляцию робота, используя редакторы rviz и gazebo.
3. Ускоряемся, меняем камеру, исправляем походку
2. Софт
1. Железо

Начав изучать ROS (Robotic operation system), сначала поражаешься, как тут «все сложно», от количества информации про топики, ноды,actions голова идет кругом. И, первое желание — вернуться в управлении роботом на старые добрые скрипты. Но нет. Каждый взрослый мужчина должен собрать для мужчины поменьше что-то, что бы ездило, мигало, пищало. В качестве платформы была выбрана ROS, так как все же это следующий шаг в развитии роботов в мире бездушных ардуино. Предлагается собрать ROS «тележку», которая будет не только дешевая, но и функциональная: сможет поехать по линии на полу, вашим котом, вашим телом :) Первые шаги будут такие:

Разработка hexapod с нуля (часть 5) — электроника

Reading time4 min
Views18K

WARNING: Данная статья устарела и носит исключительно исторический характер!

Всем привет! Разработка гексапода близится к завершению первой боевой версии и вот настало время для описания всей его электронной начинки. Так же я добавил HC-SR04 для обнаружения препятствий, которого так не хватало для визуальной удовлетворенности во внешнем виде гексапода. Будет немного нового видео и у Вас есть шанс меня отпинать по электронике.

Этапы разработки:
Часть 1 — проектирование
Часть 2 — сборка
Часть 3 — кинематика
Часть 4 — математика траекторий и последовательности
Часть 5 — электроника
Часть 6 — переход на 3D печать
Часть 7 — новый корпус, прикладное ПО и протоколы общения
Часть 8 — улучшенная математика передвижения
Часть 9 — завершение версии 1.00
Читать дальше →

Машинное обучение для всех, кто изучал математику в восьмом классе

Reading time5 min
Views22K

Привет, Хабр! Представляю вашему вниманию перевод статьи "Machine Learning for Anyone Who Took Math in Eighth Grade" автора Kyle Gallatin.


Машинное обучение


Я обычно замечаю, что искусственный интеллект объясняется одним из двух способов: через все более сенсационную призму различных медиа, или через плотную научную литературу, пронизанную излишним языком и специфическими для области терминами.


Между этими крайностями существует менее публикуемая область, где, я думаю, литература должна немного активизироваться. Новости о «прорывах», по типу этого глупого робота София, поднимают хайп вокруг искусственного интеллекта и может показаться, что это чем-то похоже на человеческое сознание, в то время как в действительности София не умнее, чем SmarterChild у AOL Instant Messenger.


Научная литература может быть еще хуже, заставляя даже самого искушенного исследователя закрывать глаза после нескольких абзацев бессмысленного псевдоинтеллектуального мусора. Чтобы правильно оценить AI, люди должны в целом понимать, что это такое на самом деле. И все, что нужно, чтобы понять основы искусственного интеллекта, это немного математики средней школы.

Читать дальше →

Как сделать первые шаги в робототехнике?

Reading time3 min
Views60K


Роботизация и автоматизация становятся всё востребованнее, и многим хотелось бы научиться создавать подобные системы и устройства. Но с чего начать, как освоить азы? Мы сделали для вас небольшую подборку русскоязычных и англоязычных YouTube-каналов с учебными материалами и методическими пособиями по робототехнике.

Как я не стал специалистом по машинному обучению

Reading time6 min
Views100K

Истории успеха любят все. И на хабре их достаточно много.


«Как я получил работу с зарплатой 300 000 долларов в Кремниевой долине»
«Как я получил работу в Google»
«Как я заработал 200 000 $ в 16 лет»
«Как я попал в Топ AppStore с простым приложением курса валют»
«Как я …» и еще тысяча и одна подобная история.



Это же здорово, что человек добился успеха и решил об этом рассказать! Читаешь и радуешься за него. Но большинство таких историй объединяет одно: ты не можешь повторить путь автора! Либо ты живешь не в то время, либо не в том месте, либо ты родился мальчиком, либо…


Я думаю, что истории неуспеха в этом плане часто бывают полезней. Тебе просто не нужно делать то, что сделал автор. А это, согласитесь, гораздо проще, чем пытаться повторить чей-то опыт. Просто такими историями люди обычно не хотят делиться. А я расскажу.

Читать дальше →

Разработка hexapod с нуля (часть 3) — кинематика

Reading time6 min
Views20K

Всем привет! Разработка гексапода продвигается и наконец-то базовая математическая часть протестирована и готова к документированию. Чтобы проект дожил до конца и не остался пылиться на полке нужно видеть его сдвиги в положительную сторону, даже если они незначительны. В этой статье я расскажу об алгоритме решения обратной задачи кинематики и наглядно покажу его в действии. Надеюсь будет интересно.

Этапы разработки:
Часть 1 — проектирование
Часть 2 — сборка
Часть 3 — кинематика
Часть 4 — математика траекторий и последовательности
Часть 5 — электроника
Часть 6 — переход на 3D печать
Часть 7 — новый корпус, прикладное ПО и протоколы общения
Часть 8 — улучшенная математика передвижения
Часть 9 — завершение версии 1.00
Читать дальше →

Взлом Amazon Echo и Google Home для защиты приватности

Reading time3 min
Views24K


Специалисты по безопасности скептически относятся к понятиям «умный дом» и «интернет вещей». Производители норовят собрать побольше данных о пользователях, что чревато утечками. Недавно Amazon отправила по неверному адресу 1700 разговоров одного пользователя с домашним помощником Alexa.

Это единичный случай, но Amazon сохраняет аудиозаписи на своих серверах, как и Google. Домашний помощник вроде Amazon Echo и Google Home — это полноценный жучок, который пользователь сам устанавливает в доме, добровольно соглашаясь на прослушку. Пока нет доказательств, что такие устройства ведут запись без произнесения слова-триггера, но технически ничто не мешает им это делать.

Project Alias призван изменить положение вещей и вернуть контроль людям.
Читать дальше →

Обучение с подкреплением на языке Python

Reading time12 min
Views45K
Привет, коллеги!



В последней публикации уходящего года мы хотели упомянуть о Reinforcement Learning — теме, книгу на которую мы уже переводим.

Посудите сами: нашлась элементарная статья с Medium, в которой изложен контекст проблемы, описан простейший алгоритм с реализацией на Python. В статье есть несколько гифок. А мотивация, вознаграждение и выбор правильной стратегии на пути к успеху — это вещи, которые исключительно пригодятся в наступающем году каждому из нас.

Приятного чтения!
Читать дальше →

Машинное обучение на Python-е с интерактивными Jupyter демонстрациями

Reading time3 min
Views35K

image


Здравствуйте, Читатели!


Недавно я запустил репозиторий Homemade Machine Learning, который содержит примеры популярных алгоритмов и подходов машинного обучения, таких как линейная регрессия, логистическая регрессия, метод K-средних и нейронная сеть (многослойный перцептрон). Каждый алгоритм содержит интерактивные демо-странички, запускаемые в Jupyter NBViewer-e или Binder-e. Таким образом у каждого желающего есть возможность изменить тренировочные данные, параметры обучения и сразу же увидеть результат обучения, визуализации и прогнозирования модели у себя в браузере без установки Jupyter-а локально.

Читать дальше →

Зарплаты в ИИ: где больше денег и кого ищут в России

Reading time5 min
Views49K
Специалистам по искусственному интеллекту платят почти в два раза больше, чем другим профессионалам в сфере IT. Мы разобрались, на какую зарплату можно рассчитывать в разных областях ИИ в России, кого ищут «Яндекс», ABBYY и «Сбербанк», и какие курсы можно использовать для обучения в этой сфере.


Читать дальше →

Data Science проект от исследования до внедрения на примере Говорящей шляпы

Reading time25 min
Views31K


Месяц назад Лента запустила конкурс, в рамках которого та самая Говорящая Шляпа из Гарри Поттера определяет предоставивших доступ к социальной сети участников на один из четырех факультетов. Конкурс сделан неплохо, звучащие по-разному имена определяются на разные факультеты, причем схожие английские и русские имена и фамилии распределяются схожим образом. Не знаю, зависит ли распределение только от имен и фамилий, и учитывается ли как-то количество друзей или другие факторы, но этот конкурс подсказал идею этой статьи: попробовать с нуля обучить классификатор, который позволит распределять пользователей на различные факультеты.

Читать дальше →

Google PageSpeed Insights кардинально обновился, что изменится?

Reading time5 min
Views49K
image

12 ноября Google по тихому обновил PageSpeed Insights, изменив в нем практически все. Это станет большой переменой для всей индустрии сайтостроения. Похоже, сейчас настанет некоторая волна паники и хайпа вокруг этого события. В статье — анализ перемен и что они нам принесут.
Читать дальше →

Как стать датасайнтистом, если тебе за 40 и ты не программист

Reading time8 min
Views151K
Бытует мнение, что стать датасайентистом можно только имея соответствующее высшее образование, а лучше ученую степень.

Однако мир меняется, технологии становятся доступны и для простых смертных. Возможно, я кого-то удивлю, но сегодня любой бизнес-аналитик в состоянии освоить технологии машинного обучения и добиться результатов, конкурирующих с профессиональными математиками, и, возможно, даже лучших.

Дабы не быть голословным, я расскажу вам свою историю — как из экономиста я стал дата-аналитиком, получив необходимые знания через онлайн-курсы и участвуя в соревнованиях по машинному обучению.



Сейчас я ведущий аналитик в группе больших данных в QIWI, но еще три года назад я был довольно далек от датасайнс и об искусственном интеллекте слышал только из новостей. Но потом все изменилось, во многом благодаря Coursera и Kaggle.

Итак, обо всем по порядку.
Читать дальше →

Книга «Глубокое обучение на Python»

Reading time6 min
Views40K
imageГлубокое обучение — Deep learning — это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из множества нелинейных преобразований. Согласитесь, эта фраза звучит угрожающе. Но всё не так страшно, если о глубоком обучении рассказывает Франсуа Шолле, который создал Keras — самую мощную библиотеку для работы с нейронными сетями. Познакомьтесь с глубоким обучением на практических примерах из самых разнообразных областей. Книга делится на две части: в первой даны теоретические основы, вторая посвящена решению конкретных задач. Это позволит вам не только разобраться в основах DL, но и научиться использовать новые возможности на практике.

Обучение — это путешествие длиной в жизнь, особенно в области искусственного интеллекта, где неизвестностей гораздо больше, чем определенности. Внутри приведен отрывок «Исследование и мониторинг моделей глубокого обучения с использованием обратных вызовов Keras и TensorBoard».
Читать дальше →

Нейронные сети для начинающих. Часть 1

Reading time7 min
Views1.6M
image

Привет всем читателям Habrahabr, в этой статье я хочу поделиться с Вами моим опытом в изучении нейронных сетей и, как следствие, их реализации, с помощью языка программирования Java, на платформе Android. Мое знакомство с нейронными сетями произошло, когда вышло приложение Prisma. Оно обрабатывает любую фотографию, с помощью нейронных сетей, и воспроизводит ее с нуля, используя выбранный стиль. Заинтересовавшись этим, я бросился искать статьи и «туториалы», в первую очередь, на Хабре. И к моему великому удивлению, я не нашел ни одну статью, которая четко и поэтапно расписывала алгоритм работы нейронных сетей. Информация была разрознена и в ней отсутствовали ключевые моменты. Также, большинство авторов бросается показывать код на том или ином языке программирования, не прибегая к детальным объяснениям.

Поэтому сейчас, когда я достаточно хорошо освоил нейронные сети и нашел огромное количество информации с разных иностранных порталов, я хотел бы поделиться этим с людьми в серии публикаций, где я соберу всю информацию, которая потребуется вам, если вы только начинаете знакомство с нейронными сетями. В этой статье, я не буду делать сильный акцент на Java и буду объяснять все на примерах, чтобы вы сами смогли перенести это на любой, нужный вам язык программирования. В последующих статьях, я расскажу о своем приложении, написанном под андроид, которое предсказывает движение акций или валюты. Иными словами, всех желающих окунуться в мир нейронных сетей и жаждущих простого и доступного изложения информации или просто тех, кто что-то не понял и хочет подтянуть, добро пожаловать под кат.
Читать дальше →

Математика для искусственных нейронных сетей для новичков, часть 1 — линейная регрессия

Reading time8 min
Views157K
Оглавление

Часть 1 — линейная регрессия
Часть 2 — градиентный спуск
Часть 3 — градиентный спуск продолжение

Введение


Этим постом я начну цикл «Нейронные сети для новичков». Он посвящен искусственным нейронным сетям (внезапно). Целью цикла является объяснение данной математической модели. Часто после прочтения подобных статей у меня оставалось чувство недосказанности, недопонимания — НС по-прежнему оставались «черным ящиком» — в общих чертах известно, как они устроены, известно, что делают, известны входные и выходные данные. Но тем не менее полное, всестороннее понимание отсутствует. А современные библиотеки с очень приятными и удобными абстракциями только усиливают ощущение «черного ящика». Не могу сказать, что это однозначно плохо, но и разобраться в используемых инструментах тоже никогда не поздно. Поэтому моей первичной целью является подробное объяснение устройства нейронных сетей так, чтобы абсолютно ни у кого не осталось вопросов об их устройстве; так, чтобы НС не казались волшебством. Так как это не математический трактат, я ограничусь описанием нескольких методов простым языком (но не исключая формул, конечно же), предоставляя поясняющие иллюстрации и примеры.

Цикл рассчитан на базовый ВУЗовский математический уровень читающего. Код будет написан на Python3.5 с numpy 1.11. Список остальных вспомогательных библиотек будет в конце каждого поста. Абсолютно все будет написано с нуля. В качестве подопытного выбрана база MNIST — это черно-белые, центрированные изображения рукописных цифр размером 28*28 пикселей. По-умолчанию, 60000 изображений отмечены для обучения, а 10000 для тестирования. В примерах я не буду изменять распределения по-умолчанию.
Читать дальше →

Едят ли микробы космические станции

Reading time4 min
Views33K


У людей есть самые разные представления о количестве и опасности микрофлоры на космических станциях. Кто-то считает, что там стерильная чистота, а кто-то верит в жуткие истории о грибках, которые чуть не съели станцию «Мир» и микроорганизмах-мутантах, заражавших космонавтов. Реальность, конечно же, находится между этими крайностями, но к какому полюсу она ближе?
Читать дальше →

Обучение машины — забавная штука: современное распознавание лиц с глубинным обучением

Reading time12 min
Views98K
Вы заметили, что Фейсбук обрёл сверхъестественную способность распознавать ваших друзей на ваших фотографиях? В старые времена Фейсбук отмечал ваших друзей на фотографиях лишь после того, как вы щёлкали соответствующее изображение и вводили через клавиатуру имя вашего друга. Сейчас после вашей загрузки фотографии Фейсбук отмечает любого для вас, что похоже на волшебство:
Читать дальше →

Какие из данных платформ подходят для лаборатории робототехники и интеллектуальных систем?

Reading time2 min
Views11K


Господа! У меня уже две различные организации спрашивали совета про оборудование лаборатории роботики. Причем не для младших детей, а для старших школьников + младших студентов, с возможностью расширения до старших студентов и исследовательских проектов. То есть ожидается, что в лаборатории будут использоваться профессиональные средства разработки, а не упрощенные, наподобие Лего и недостаточно гибкого Ардуино. Кроме этого, ожидается, что роботы будут делать что-нибудь умное, с распознаванием образов и ситуаций, чтобы можно было бы назвать «лаборатория робототехники и интеллектуальных систем».

По этому поводу я хочу устроить обсуждение:

1. Ниже я перечислю несколько платформ, которые я собираюсь привезти в августе в Казахстан и в октябре-ноябре в Россию и Украину. Я знаю, что на большинстве из этих платформ кто-нибудь да построил робота. Но каких из этих платформ подходят для роботики с вашей точки зрения?

2. У меня не очень много опыта с моторчиками и другими активаторами. Где и что бы вы купили для преподавания робототехники (как специализации программирования встроенных систем)?

Восемь платформ у меня на руках:
Читать дальше →

Information

Rating
Does not participate
Location
Германия
Date of birth
Registered
Activity