
Охотничьи зоонозы: когда утка опасней ружья

User
Пару лет назад друзья скинули очень забавный комикс под названием “Сова — эффективный менеджер”. Я посмеялась, подумала, что смешно, такого же не бывает, как классно утрированы ситуации. Но очень скоро этот комикс стал моей реальностью — в нашей команде появился он: “эффективный” менеджер, и стало не до смеха.
Итак, с этого момента начинается вызов для продакт/проджект менеджера и команды. В ходе этой истории все стороны понесли огромные потери: и инвестор, и продукт, и команда. Но главное, что из подобных ситуаций выход есть, а масштабы бедствия можно локализовать и сократить.
Earth Engine — это облачная платформа для геопространственного анализа данных в планетарных масштабах. Она позволяет использовать огромные вычислительные мощности компании Google для изучения самых разнообразных проблем: потерь лесов, засухи, стихийных бедствий, эпидемий, продовольственной безопасности, управления водными ресурсами, изменения климата и защиты окружающей среды. Чтобы избежать путаницы в названиях, сразу определим, что Google Earth (он же — Google Планета Земля) и Google Earth Engine — это два разных продукта. Первый, не требуя от пользователей особых компьютерных навыков, предназначен для визуализации спутниковых снимков и позволяет путешествовать и исследовать мир, взаимодействуя с виртуальным глобусом. Второй, которому посвящена эта статья, — это прежде всего инструмент для анализа данных. Использование Earth Engine предполагает знание прикладной области и умение писать программный код. Ссылка на официальный сайт проекта.
В связи с растущим публичным интересом к анализу и визуализации различных пространственных моделей (например, для изучения распространения вирусов) мне вспомнился один из проектов, которыми я занимался на фриланс-платформе Upwork. Эта работа выполнена по заказу корпорации Google и заключалась в создании общедоступного датасета OpenStreetMap (OSM) на Google Cloud Platform для работы с ним с помощью Google BigQuery и создании некоторых примеров анализа данных OpenStreetMap (смотрите Python Jupyter Notebooks в репозитории). Моей частью проекта была работа с данными; кто сразу хочет посмотреть код — добро пожаловать в мой гит-репозиторий bigquery-openstreetmap. Далее я расскажу, в чем заключаются преимущества созданного датасета (хинт: реализован и доступен классификатор слоев на SQL) и как его можно использовать.
Обращение к читателям: убедительная просьба избежать обсуждения Upwork в частности и фриланса в целом в комментариях, ну надоело же, право слово… разные там проекты есть.
Результаты анализа дорожной сети города Бостона по данным OpenStreetMap. Красным цветом обозначены хайвеи с высоким Betweenness centrality (bc), зеленым — улицы с высоким bc, желтым — хайвей с низким bc, серым — улицы с низким bc.
Сначала о том, как 5 месяцев назад я проходил собеседование на работу. Меня посоветовал друг, и прошло уже немало времени, с момента как я ответил рекрутеру. Я был поражён, как сильно весь процесс изменился за последние 5 лет.
После первичного созвона меня отправили на сторонний сайт (HackerRank), чтобы я решил три небольших задачки за 1 час. Для меня это был первый подобный опыт. Первые две задачки были простыми, но третья оказалась посложней. Когда время подошло к концу, моё решение не проходило все тесты, а только где-то 8 из 10 необходимых.