Pull to refresh
10
0
Дмитрий Шехов @rebra

User

Send message

MLOps в билайн: как катить машинное обучение в production без ML-инженеров. Часть I

Level of difficultyMedium
Reading time10 min
Views5.9K

Всем привет! Меня зовут Николай Безносов, я отвечаю за применение и развитие машинного обучения и продвинутой аналитики в билайне. В одной из прошлых статей мои коллеги рассказывали о месте Seldon в ML-инфраструктуре компании, а сегодня мы поднимемся на уровень выше и поговорим о том, что из себя представляет MLOps в билайне в целом - как с точки зрения инфраструктуры, так и с точки зрения процессов.

В статье речь пойдет о нашем опыте создания ML-платформы, которая помогает дата-сайентистам самостоятельно управлять всем жизненным циклом ML-моделей - от разработки до постановки в production. Я рассчитываю, что статья будет полезна как небольшим командам, которые только начинают выстраивать у себя ML-инфраструктуру, так и корпорациям с большим количеством команд и жесткими требованиями к безопасности, которые при этом хотят эффективно масштабироваться.

Статья будет состоять из двух частей. В первой части мы посмотрим верхнеуровнево, как и по каким причинам менялись наши ML-процессы и инфраструктура в билайне - с чего мы начинали и к чему в итоге пришли. Во второй части поговорим о конкретных инструментах и технологиях, которые мы внедрили, чтобы сделать наш процесс разработки и деплоя моделей простым, воспроизводимым, автоматизируемым и наблюдаемым.

Читать далее
Total votes 19: ↑18 and ↓1+17
Comments5

Data Engineering: концепции, процессы и инструменты

Level of difficultyMedium
Reading time16 min
Views5.5K
Data science, машинное обучение и искусственный интеллект — не просто громкие слова: многие организации стремятся их освоить. Но прежде чем создавать интеллектуальные продукты, необходимо собрать и подготовить данные, которые станут топливом для ИИ. Фундамент для аналитических проектов закладывает специальная дисциплина — data engineering. Связанные с ней задачи занимают первые три слоя иерархии потребностей data science, предложенной Моникой Рогати.


Слои data science для реализации ИИ.

В этой статье мы рассмотрим процесс data engineering, расскажем о его базовых компонентах и инструментах, опишем роль дата-инженера.
Читать дальше →
Total votes 1: ↑1 and ↓0+1
Comments1

Что внутри черного ящика: понимаем работу ML-модели с помощью SHAP

Level of difficultyHard
Reading time9 min
Views8.5K

Значения Шепли применяются в экономике, а точнее — в теории кооперативных игр. Такие значения назначаются игрокам сообразно их вкладу в игру. В сфере машинного обучения идея использования значений Шепли нашла отражение во фреймворке SHAP (SHapley Additive exPlanations). Он представляет собой эффективный инструмент для интерпретации механизмов функционирования моделей.

Если вам интересны подробности о значениях Шепли — очень рекомендую обратиться к моей предыдущей статье, посвящённой математическим и интуитивным представлениям, раскрывающим смысл этих значений. И хотя в машинном обучении эти значения применяются по‑особенному, понимание базовых принципов, на которых они основаны, может оказаться полезным.

Использование значений Шепли во фреймворке SHAP напоминает их классическое применение тем, что они отражают индивидуальное влияние признаков на «игру» (другими словами — на модель машинного обучения). Но модели машинного обучения — это «игры», где нет «кооперирования» игроков, то есть — признаки не обязательно взаимодействуют друг с другом, как это происходило бы, будь они игроками в кооперативной игре. Вместо этого каждый из признаков вносит независимый вклад в результаты работы модели. Хотя тут может быть использована формула для нахождения значений Шепли, соответствующие вычисления могут оказаться слишком «тяжёлыми» и неточными. Это так из‑за большого количества «игроков» и из‑за того, что они могут объединяться в «союзы». Для того чтобы решить эту проблему, исследователи разработали альтернативные подходы. Среди них — метод Монте‑Карло и ядерные методы. В этом материале мы будем заниматься методом Монте‑Карло.

Читать далее
Total votes 11: ↑11 and ↓0+11
Comments0

[ В закладки ] Зоопарк архитектур нейронных сетей. Часть 1

Reading time10 min
Views92K


Это первая часть, вот вторая.
За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться невыполнимой задачей.

Поэтому я решил составить шпаргалку по таким архитектурам. Большинство из них — нейронные сети, но некоторые — звери иной породы. Хотя все эти архитектуры подаются как новейшие и уникальные, когда я изобразил их структуру, внутренние связи стали намного понятнее.
Читать дальше →
Total votes 51: ↑50 and ↓1+49
Comments14

Шпаргалка по визуализации данных в Python с помощью Plotly

Reading time62 min
Views276K
Plotly — библиотека для визуализации данных, состоящая из нескольких частей:

  • Front-End на JS
  • Back-End на Python (за основу взята библиотека Seaborn)
  • Back-End на R

В этой простыне все примеры разобраны от совсем простых к более сложным, так что разработчикам с опытом будет скучно. Так же эта «шпаргалка» не заменит на 100% примеры из документации.



Читать дальше →
Total votes 15: ↑15 and ↓0+15
Comments17

Метод главных компонент: аналитическое решение

Reading time23 min
Views21K


В этой статье мы залезем под капот одному из линейных способов понижения размерности признакового пространства данных, а именно, подробно ознакомимся с математической стороной метода главных компонент (Principal Components Analysis, PCA).
Читать дальше →
Total votes 4: ↑4 and ↓0+4
Comments0

Математика для Data Science и машинного обучения за 8 месяцев. Подробный план обучения

Level of difficultyEasy
Reading time7 min
Views76K

Беспилотные автомобили, продвинутые голосовые ассистенты, рекомендательные системы – это только малая часть тех классных продуктов, которые создаются с помощью инженеров по машинному обучению и, думаю, не для кого не секрет, что за кулисами сего чуда стоит математика. Именно она играет главную роль в понимании алгоритмов машинного и глубокого обучения.

Машинное обучение держится на трёх основных столпах:

Читать далее
Total votes 24: ↑23 and ↓1+22
Comments44

Типичные распределения вероятности: шпаргалка data scientist-а

Reading time11 min
Views125K

У data scientist-ов сотни распределений вероятности на любой вкус. С чего начать?


Data science, чем бы она там не была – та ещё штука. От какого-нибудь гуру на ваших сходках или хакатонах можно услышать:«Data scientist разбирается в статистике лучше, чем любой программист». Прикладные математики так мстят за то, что статистика уже не так на слуху, как в золотые 20е. У них даже по этому поводу есть своя несмешная диаграмма Венна. И вот, значит, внезапно вы, программист, оказываетесь совершенно не у дел в беседе о доверительных интервалах, вместо того, чтобы привычно ворчать на аналитиков, которые никогда не слышали о проекте Apache Bikeshed, чтобы распределённо форматировать комментарии. Для такой ситуации, чтобы быть в струе и снова стать душой компании – вам нужен экспресс-курс по статистике. Может, не достаточно глубокий, чтобы вы всё понимали, но вполне достаточный, чтобы так могло показаться на первый взгляд.
Читать дальше →
Total votes 86: ↑85 and ↓1+84
Comments28

Методы сбора ансамблей алгоритмов машинного обучения: стекинг, бэггинг, бустинг

Reading time5 min
Views29K

Ансамбль - это просто несколько алгоритмов машинного обучения, собранных в единое целое. Такой подход часто используется для того, чтобы усилить "положительные качества" отдельно взятых алгоритмов, которые сами по себе могут работать слабо, а вот в группе - ансамбле давать хороший результат. При использовании ансамблевых методов алгоритмы учатся одновременно и могут исправлять ошибки друг друга. Типичными примерами методов, направленных на объединение "слабых" учеников в группу сильных являются стекинг, бэггинг, бустинг, которые и будут рассмотрены далее.

Читать далее
Rating0
Comments2

Пишем GPT в 60 строк NumPy (окончание, 2/2)

Level of difficultyMedium
Reading time15 min
Views13K
image

В первой части поста мы начали реализацию с нуля GPT всего в 60 строках numpy.

Во завершающей части мы загрузим в нашу реализацию опубликованные OpenAI веса обученной модели GPT-2 и сгенерируем текст.
Читать дальше →
Total votes 16: ↑16 and ↓0+16
Comments5

Открытый курс машинного обучения. Тема 10. Градиентный бустинг

Reading time18 min
Views292K

Всем привет! Настало время пополнить наш с вами алгоритмический арсенал.


Сегодня мы основательно разберем один из наиболее популярных и применяемых на практике алгоритмов машинного обучения — градиентный бустинг. О том, откуда у бустинга растут корни и что на самом деле творится под капотом алгоритма — в нашем красочном путешествии в мир бустинга под катом.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).

Читать дальше →
Total votes 64: ↑63 and ↓1+62
Comments17

CatBoost, XGBoost и выразительная способность решающих деревьев

Reading time42 min
Views50K

Сейчас существенная часть машинного обучения основана на решающих деревьях и их ансамблях, таких как CatBoost и XGBoost, но при этом не все имеют представление о том, как устроены эти алгоритмы "изнутри".

Данный обзор охватывает сразу несколько тем. Мы начнем с устройства решающего дерева и градиентного бустинга, затем подробно поговорим об XGBoost и CatBoost. Среди основных особенностей алгоритма CatBoost:

• Упорядоченное target-кодирование категориальных признаков
• Использование решающих таблиц
• Разделение ветвей по комбинациям признаков
• Упорядоченный бустинг
• Возможность работы с текстовыми признаками
• Возможность обучения на GPU

В конце обзора поговорим о методах интерпретации решающих деревьев (MDI, SHAP) и о выразительной способности решающих деревьев. Удивительно, но ансамбли деревьев ограниченной глубины, в том числе CatBoost, не являются универсальными аппроксиматорами: в данном обзоре приведено собственное исследование этого вопроса с доказательством (и экспериментальным подтверждением) того, что ансамбль деревьев глубины N не способен сколь угодно точно аппроксимировать функцию y = x_1 x_2 \dots x_{N+1}. Поговорим также о выводах, которые можно из этого сделать.

Читать далее
Total votes 48: ↑48 and ↓0+48
Comments9

Интерпретация моделей и диагностика сдвига данных: LIME, SHAP и Shapley Flow

Reading time38 min
Views29K

В этом обзоре мы рассмотрим, как методы LIME и SHAP позволяют объяснять предсказания моделей машинного обучения, выявлять проблемы сдвига и утечки данных, осуществлять мониторинг работы модели в production и искать группы примеров, предсказания на которых объясняются схожим образом.

Также поговорим о проблемах метода SHAP и его дальнейшем развитии в виде метода Shapley Flow, объединяющего интерпретацию модели и многообразия данных.

Читать далее
Total votes 36: ↑35 and ↓1+34
Comments1

Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес

Reading time28 min
Views260K

Пятую статью курса мы посвятим простым методам композиции: бэггингу и случайному лесу. Вы узнаете, как можно получить распределение среднего по генеральной совокупности, если у нас есть информация только о небольшой ее части; посмотрим, как с помощью композиции алгоритмов уменьшить дисперсию и таким образом улучшить точность модели; разберём, что такое случайный лес, какие его параметры нужно «подкручивать» и как найти самый важный признак. Сконцентрируемся на практике, добавив «щепотку» математики.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.


Видеозапись лекции по мотивам этой статьи в рамках второго запуска открытого курса (сентябрь-ноябрь 2017).


Читать дальше →
Total votes 56: ↑55 and ↓1+54
Comments31

SVM. Подробный разбор метода опорных векторов, реализация на python

Reading time15 min
Views127K

Привет всем, кто выбрал путь ML-самурая!


Введение:


В данной статье рассмотрим метод опорных векторов (англ. SVM, Support Vector Machine) для задачи классификации. Будет представлена основная идея алгоритма, вывод настройки его весов и разобрана простая реализация своими руками. На примере датасета $Iris$ будет продемонстрирована работа написанного алгоритма с линейно разделимыми/неразделимыми данными в пространстве $R^2$ и визуализация обучения/прогноза. Дополнительно будут озвучены плюсы и минусы алгоритма, его модификации.


image
Рисунок 1. Фото цветка ириса из открытых источников

Читать дальше →
Total votes 52: ↑51 and ↓1+50
Comments5

Градиентный бустинг с CATBOOST (часть 3/3)

Reading time8 min
Views20K

В предыдущих частях мы рассматривали задачу бинарной классификации. Если классов более чем два, то используется MultiClassification, параметру loss_function будет присвоено значение MultiClass. Мы можем запустить обучение на нашем наборе данных, но мы получим те же самые результаты, а обучение будет идти несколько дольше:

Читать далее
Total votes 3: ↑3 and ↓0+3
Comments0

Градиентный бустинг с CatBoost (часть 2/3)

Reading time8 min
Views17K

В первой части статьи я рассказал про понятие градиентного бустинга, библиотеки, с помощью которых можно реализовать данный алгоритм и углубились в одну из этих библиотек. Сегодня продолжим разговор о CatBoost и рассмотрим Cross Validation, Overfitting Detector, ROC-AUC, SnapShot и Predict. Поехали!

До этого момента мы мерили качество на каком-то конкретном fold’e (конкретной выборке), то есть взяли разделили нашу выборку на обучающую и тестовую, это не совсем корректно, вдруг мы взяли какой-то непрезентативный кусок нашего датасета, на этом самом куске мы получим хорошее качество, а когда модель будет работать с реальными данными, то с качеством все будет крайне грустно. Дабы избежать этого, необходимо использовать Cross Validation.

Разобьём наш датасет на кусочки и дальше будем обучать модель столько раз, сколько у нас будет кусочков. Сначала обучаем модель на все кусках кроме первого, нам нем будет происходить валидация, потом на втором будет происходить такая же ситуация и все это дело будет повторяться до последнего кусочка нашей выборки:

Читать далее
Total votes 7: ↑6 and ↓1+5
Comments0

Градиентный бустинг с CATBOOST

Reading time7 min
Views18K

CatBoost – библиотека, которая была разработана Яндексом в 2017 году, представляет разновидность семейства алгоритмов Boosting и является усовершенствованной реализацией Gradient Boosting Decision Trees (GBDT). CatBoost имеет поддержку категориальных переменных и обеспечивает высокую точность. Стоит сказать, что CatBoost решает проблему смещения градиента (Gradient Bias) и смещения предсказания (Prediction Shift), это позволяет уменьшить вероятность переобучения и повысить точность алгоритма.

Загружаем набор данных...
Total votes 7: ↑7 and ↓0+7
Comments1

Открытый курс машинного обучения. Тема 3. Классификация, деревья решений и метод ближайших соседей

Reading time33 min
Views493K

Привет всем, кто проходит курс машинного обучения на Хабре!


В первых двух частях (1, 2) мы попрактиковались в первичном анализе данных с Pandas и в построении картинок, позволяющих делать выводы по данным. Сегодня наконец перейдем к машинному обучению. Поговорим о задачах машинного обучения и рассмотрим 2 простых подхода – деревья решений и метод ближайших соседей. Также обсудим, как с помощью кросс-валидации выбирать модель для конкретных данных.


UPD 01.2022: С февраля 2022 г. ML-курс ODS на русском возрождается под руководством Петра Ермакова couatl. Для русскоязычной аудитории это предпочтительный вариант (c этими статьями на Хабре – в подкрепление), англоговорящим рекомендуется mlcourse.ai в режиме самостоятельного прохождения.

Читать дальше →
Total votes 63: ↑62 and ↓1+61
Comments50

Решаем уравнение простой линейной регрессии

Reading time23 min
Views30K
В статье рассматривается несколько способов определения математического уравнения линии простой (парной) регрессии.

Все рассматриваемые здесь способы решения уравнения основаны на методе наименьших квадратов. Обозначим способы следующим образом:

  • Аналитическое решение
  • Градиентный спуск
  • Стохастический градиентный спуск

Для каждого из способов решения уравнения прямой, в статье приведены различные функции, которые в основном делятся на те, которые написаны без использования библиотеки NumPy и те, которые для проведения расчетов применяют NumPy. Считается, что умелое использование NumPy позволит сократить затраты на вычисления.

Весь код, приведенный в статье, написан на языке python 2.7 с использованием Jupyter Notebook. Исходный код и файл с данными выборки выложен на гитхабе

Статья в большей степени ориентирована как на начинающих, так и на тех, кто уже понемногу начал осваивать изучение весьма обширного раздела в искусственном интеллекте — машинного обучения.

Для иллюстрации материала используем очень простой пример.
Читать дальше →
Total votes 9: ↑9 and ↓0+9
Comments25
1

Information

Rating
Does not participate
Location
Санкт-Петербург, Санкт-Петербург и область, Россия
Works in
Date of birth
Registered
Activity