Pull to refresh

Совет главных конструкторов по российскому сегменту МКС разрешил запуск корабля «Союз МС-14» с роботом FEDOR

Reading time 8 min
Views 7.5K

С учетом оценки фактического состояния совет главных конструкторов принял решение допустить российский сегмент МКС к выполнению программы работ с кораблем «Союз МС-14».

В продолжении этих публикаций:

Люк корабля «Союз МС-14» оказался узок для робота FEDOR
Как доработали робота FEDOR и кресло для полета на МКС
Робот FEDOR — тренировка с новым экипажем МКС и первые космические задачи
На МКС полетит не FEDOR, а Skybot F-850
Перед стартом на МКС робот FEDOR (Skybot F-850) завел твиттер
Робот FEDOR (Skybot F-850) учится… открывать бутылку и брать отвертку



В РКК «Энергия» (входит в Госкорпорацию «Роскосмос») состоялось заседание Совета главных конструкторов по российскому сегменту Международной космической станции (РС МКС).



О задачах, связанных с подготовкой к запуску транспортного пилотируемого корабля (ТПК) «Союз МС-14» сообщил генеральный директор РКК «Энергия» Николай Севастьянов.

Он подчеркнул, что этому запуску уделяется особое внимание, поскольку миссия является отработочной и должна положить начало пилотируемым полётам кораблей «Союз МС» на ракете-носителе «Союз-2.1а».

Предстоящему старту «Союз МС» предшествовали 8 успешных запусков ракеты «Союз-2.1а» с кораблями «Прогресс МС».

Генеральный директор корпорации напомнил, что с 2020 года запуски пилотируемых кораблей «Союз МС» будут производиться на ракете-носителе «Союз-2.1а» со стартовой площадки №31 космодрома Байконур.

Заместитель главного конструктора перспективных космических комплексов и систем корпорации Игорь Хамиц доложил о выполнении задач по переводу запусков пилотируемых кораблей «Союз МС» на ракету-носитель «Союз-2.1а» и программе лётных испытаний ракетно-космического комплекса ТПК «Союз МС»/РН «Союз-2.1а».

С докладом о готовности к проведению лётных испытаний РКК с кораблём «Союз МС-14» выступил представитель РКЦ «Прогресс» Сергей Волков.

О ходе подготовки к запуску транспортного пилотируемого корабля «Союз МС-14» доложил первый заместитель генерального директора РКК «Энергия» Сергей Романов.

С докладами о готовности всех систем и приборов корабля «Союз МС-14» и РС МКС также выступили главные конструкторы, ответственные представители РКК «Энергия» и организаций-соисполнителей: НИИ ТП, «Российские космические системы», ЦНИИ РТК, НПП «Квант», НПО ИТ, «Орбита», НПП «Звезда», МКБ «Искра», НИИ парашютостроения, КБ ХИММАШ, НИТС, НИИ СК, ЦЭНКИ, ЦНИИмаш, Росавиация, НИИ ЦПК, КБ «Салют» и др.

О целях космического эксперимента «Испытатель», в ходе которого будет протестирована работа антропоморфной робототехнической системы (АРТС) Skybot F-850, рассказал представитель НПО «Андроидная техника» Игорь Сохин.

Программу полёта на предстоящий период и доклад о готовности МКС, Главной оперативной группы управления (ГОГУ) и средств обеспечения полёта к выполнению работ с кораблем «Союз МС-14» представил первый заместитель генерального конструктора по лётной эксплуатации, испытаниям ракетно-космических комплексов и систем РКК «Энергия» Владимир Соловьёв.

По итогам заседания Советом главных конструкторов одобрены предложения РКК «Энергия» по плану предстоящих работ по подготовке корабля «Союз МС-14» к запуску 22 августа 2019 года.

С учётом оценки фактического состояния Совет главных конструкторов принял решение допустить РС МКС к выполнению программы работ с кораблем «Союз МС-14».





Что же это за космический эксперимент «Испытатель»?

Это исследование возможностей использования дистанционно-управляемого антропоморфного робота в перспективных пилотируемых транспортных кораблях нового поколения.

Таким образом, АРТС (антропоморфные робототехнические системы) будут основным элементом технологии освоения космического пространства.

Космическая робототехника — направление в робототехнике, разрабатывающее робототехнические комплексы или системы для решения прикладных задач в экстремальных условиях космоса, на поверхности безатмосферных космических тел, в атмосфере планет земного и неземного типа.

Космическая робототехника сможет увеличить возможности для создания принципиально новых типов космических аппаратов, работающих в пилотируемом и беспилотных режимах, что расширит их функциональные возможности, повысит безопасность, надежность и долговечность работы, обеспечить сохранность устройств, уменьшит эксплуатационные расходы.

Области применения робототехнических систем в космосе:

– работа в открытом космосе (в условиях вакуума, жестких ионизирующих излучений) снаружи и внутри космических кораблей (эмоциональная поддержка экипажа, обслуживание, регламентные и ремонтные работы, сборочные, разгрузочно-погрузочные работы, инспекция, различного рода манипуляции);

– работа на поверхности планет и других космических тел (исследование, освоение, строительство).

Антропоморфные робототехнические системы (АРТС), могут быть применены на космических станциях, напланетных базах и межпланетных комплексах.

На сегодня, наиболее ожидаемо использование РТС на наружной поверхности орбитальных станций околоземных, лунных и марсианских.

Такие РТС могут доставляться к месту выполнения работ грузовыми манипуляторами, за пределами зон досягаемости которых роботы перемещаются самостоятельно.

Первоочередными задачами являются инспекция, установка и обслуживание оборудования, помощь космонавтам при вне корабельной деятельности.

Эффективное использование АРТС возможно лишь при соответствующей его адаптации к выполнению полетных операций.

В связи с этим, необходимо сформировать уточненные требования к значениям кинематических и силовых параметров принятой структуры исполнительной системы демонстрационного образца РТС.

Научная новизна космического эксперимента «Испытатель» заключается в:

– проверке адекватности, уточнении и верификации математической модели АРТС как многозвенной приводной машины, действующей в условиях невесомости в ограниченном пространстве;

– исследовании комплексного влияния факторов космического полёта на системы АРТС (датчиковая аппаратура, в том числе средства силомоментного очувствления и средства технического зрения, элементы точной механики и т.д.);

– уточнении требований к системе управления манипуляторами и захватами в режиме тонкой моторики для обеспечения выполнения операций при воздействии факторов космического полета;

– уточнении требований к характеристикам приводов манипуляторов и захватов для обеспечения выполнения силовых операций с замками, задвижками, вентилями и т.д., функционирующих как в условиях невесомости, так и нормального значения силы тяжести;

– моделировании нагрузок на пилота на активном участке полёта (получение информации о нагрузках на экипаж);

– исследовании режимов собственного тепловыделения АРТС на различных стадиях полёта с учётом решаемых функциональных задач.

Внедрение в космической технике АРТС позволит создать инновационную базовою технологию для освоения ближнего и дальнего космоса, отличающуюся многофункциональностью за счет широкого перечня выполняемых такими роботами операций и возможности использования их как на пилотируемых и на автоматических КА, так и напланетных базах.

Задачи эксперимента «Испытатель»:

– проведение испытаний АРТС на стойкость к ВВФ при нахождении в кресле члена экипажа ПТК (пилотируемого транспортного корабля);

– расширение объема информации, получаемой в ходе беспилотных испытаний ПТК за счет встроенных датчиков;

– демонстрация высокого потенциала отечественной науки и техники;

– моделирование типовых действий членов экипажа, таких как прием и передача голосовых сообщений, имитация работы со средствами ручного управления (пульт космонавтов, пульт ОВК), на всех этапах полета;

– сбор и передачу в ЦУП телеметрической информации о работоспособности АРТС и действующих на него нагрузках;

– отработку голосового канала связи через аппаратуру бортовой радиотехнической системы;

– дополнительный видеоконтроль объема командного отсека ВА;

– исследование возможности интеграции робототехнических систем в пилотируемые КА.

В общем, первый полет робота FEDOR (Skybot F-850) будет только пробным шагом в большом объеме испытаний и экспериментов, связанных с разработкой и использованием антропоморфных робототехнических систем.



Тем более, что еще в 2015 году были интересные предпосылки этого полета робота FEDOR — эксперимент «Теледроид»: «Исследование возможностей использования дистанционно-управляемого антропоморфного робота для операционной поддержки деятельности космонавтов в условиях орбитального полета».















Это будет уникальный полет, поскольку впервые робот будет сидеть в кресле командира корабля, а не в грузовом отсеке, как доставленный несколько лет назад на Международную космическую станцию американский человекоподобный Robonaut-2.

Во время полета Skybot F-850 будет комментировать происходящее, а на борту Международной космической станции выполнит несколько заданий под управлением космонавта Александра Скворцова и сможет пообщаться с экипажем.

Чем робот займется на МКС, о чем с ним можно будет поговорить и что ждет «киберкосмонавта» после возвращения на Землю, рассказал РИА Новости исполнительный директор по перспективным программам и науке госкорпорации «Роскосмос» Александр Блошенко.

— Какие изменения внесены в конструкцию Skybot для полета на МКС по сравнению с тем роботом, который разрабатывался по заказу Фонда перспективных исследований?

— В настоящее время модификация антропоморфного робота Skybot F-850 сильно отличается от его предшественников. Например, в новой версии изменены электронная компонентная база, материал пластиковых элементов и система управления. Все изменения, которые приходилось выполнять в короткий срок, тесно связаны с условиями эксплуатации и высокими требованиями к оборудованию, используемому в ракетно-космической отрасли.

— Можно ли назвать его роботом или с технической точки зрения это дистанционный манипулятор, напоминающий по форме человека?

— Skybot F-850 — в полной мере робот. Это автоматическое устройство, которое имеет заранее заложенную программу с элементами искусственного интеллекта. Такие задачи, как поддержание равновесия, декомпозиция общих движений на отдельные локомоторные функции и экспертная поддержка экипажа, он способен выполнять в самостоятельном режиме. Помимо этого, робот может работать в режиме аватара, то есть под полным дистанционным управлением оператора.

— Сообщалось, что робот будет общаться с космонавтами, комментировать состояние полета в корабле «Союз». На какие темы он может поддерживать беседу? Умеет ли Skybot F-850 шутить?

— Антропоморфный робот Skybot F-850 может общаться на любую тему, начатую его собеседником. Перед пуском ракеты-носителя «Союз-2.1а» он будет докладывать о предстартовой подготовке, а уже во время старта и полета озвучивать параметры полета и наблюдаемые события. На этапе выведения корабля на орбиту робот должен будет определить значение перегрузки и наступление невесомости.

Как и любой человек, Skybot F-850 очень общительный, с юмором. Как я говорил, он может поддержать любую тему разговора, ответить на самые различные вопросы: начиная от приветственных, продолжая о его создателях и заканчивая философией космоса.

— Как будет обеспечено электропитание робота?

Электропитание антропоморфного робота Skybot F-850 обеспечивается за счет набора штатных аккумуляторных батарей от космического скафандра серии «Орлан», в которых космонавты работают за пределами международной космической станции.

— Какие задачи стоят перед роботом во время пребывания на МКС? Что он выполнит на борту станции?

— Задачи антропоморфного робота Skybot F-850 на борту международной космической станции заключаются в выполнении испытаний, подготовленных российскими инженерами для оказания помощи космонавтам внутри МКС. В этом полете робот будет работать в режиме копирования движений оператора. В случае если все испытания пройдут успешно, следующее поколение роботов серии «FEDOR» будет тестироваться за пределами орбитальной станции. В перспективе это позволит свести к минимуму риск работы космонавта в космическом пространстве, при организации ремонтных работ на МКС и других космических аппаратах.

— Нет ли опасений, что неосторожные движения робота нанесут повреждения системам МКС? Какие меры обеспечения безопасности предпринимаются для недопущения такого развития событий?

— Для обеспечения безопасного нахождения на борту международной космической станции антропоморфного робота Skybot F-850 используются разного рода алгоритмы защиты на уровне системы управления. Например, введено ограничение управляющего воздействия со стороны оператора по рывку, ускорению, угловой скорости и положению каждой степени подвижности, а также всевозможные электронные программные наблюдатели, сверяющие показания с математической моделью робота.

— Что будет с роботом после его возвращения на Землю? Будет ли он как-то дорабатываться?

— Решение о доработке антропоморфного робота Skybot F-850 после выполнения полета на международную космическую станцию будет принято по результатам обработки данных по текущему эксперименту.

— Когда последует второй визит робота в космос? Выйдет ли он в открытый космос?

— Решение о последующих полетах на околоземную орбиту и выходе в открытое космическое пространство антропоморфного робота Skybot F-850 будет принято по результатам обработки данных по текущему эксперименту. В данный момент существует проект полноценной программы дальнейших работ, но его пока преждевременно презентовать.

Таким образом, робот FEDOR в своей космической версии Skybot F-850 это специально модернизированная антропоморфная робототехническая система (АРТС) с элементами искусственного интеллекта, ограничениями в двигательном функционале, умеющая действовать самостоятельно или с помощью оператора, энергопитание которой зависит от аккумуляторных батарей.
Tags:
Hubs:
If this publication inspired you and you want to support the author, do not hesitate to click on the button
+15
Comments 19
Comments Comments 19

Other news