Как стать автором
Обновить

Компания Школа Данных временно не ведёт блог на Хабре

Сначала показывать

Разница между Data Scientist и подростком в спорткаре

Время на прочтение6 мин
Количество просмотров6.6K


В последнее время появилось множество курсов, как академических, так и частных, которые ставят перед собой целью обучить анализу данных и готовят специалистов, способных решать бизнес-задачи с применением машинного обучения. Если посмотреть внимательно на программы этих курсов — все они примерно одинаковые, отличие только в форматах обучения (онлайн-офлайн) и в преподавателях.
Читать дальше →
Всего голосов 49: ↑20 и ↓29-9
Комментарии6

Машинное обучение vs. аналитический подход

Время на прочтение5 мин
Количество просмотров8K


Какое-то время назад мы нашли свои старые материалы, по которым обучали первые потоки на наших курсах машинного обучения в Школе Данных и сравнили их с теперешними. Мы удивились, сколько всего мы добавили и поменяли за 5 лет обучения. Осознав, почему мы это сделали и как, на самом деле, поменялся подход к решению задач Data Science, мы решили написать вот эту публикацию.
Читать дальше →
Всего голосов 19: ↑16 и ↓3+13
Комментарии7

Роботы в журналистике, или Как использовать искусственный интеллект для создания контента

Время на прочтение8 мин
Количество просмотров8.7K
Машины становятся умнее. Уже сейчас они генерируют контент такого качества, что даже профессионал не всегда отличает его от «человеческого». О том, почему журналистам и редакторам не стоит опасаться конкуренции, и о перспективах автоматизации журналистики на нашей конференции «Контентинга» рассказал Сергей Марин из «Студии данных».



Под катом расшифровка его доклада.
Читать дальше →
Всего голосов 24: ↑23 и ↓1+22
Комментарии5

Распознавание рентгеновских снимков: precision = 0.84, recall = 0.96. А нужны ли нам еще врачи?

Время на прочтение5 мин
Количество просмотров16K


В последнее время все чаще обсуждается применение AI в медицине. И, конечно, область медицины, которая прямо напрашивается для такого применения это областей диагностики.

Кажется, и раньше можно было применять экспертные системы и алгоритмы классификации к задачам постановки диагноза. Однако, есть одна область AI, которая добилась наибольших успехов в последние годы, а именно область распознавания изображений и сверточные нейронные сети. На некоторых тестах алгоритмы AI в распознавании картинок превзошли человека. Вот два примера: Large Scale Visual Recognition Challenge и German Traffic Sign Recognition Benchmark.

Соответственно, возникла идея применить AI к области распознавания изображений там, где и врачи занимаются распознаванием изображений, а именно к анализу снимков и, для начала, рентгеновских снимков.
Читать дальше →
Всего голосов 26: ↑19 и ↓7+12
Комментарии40

Роботизация может вести к диктатуре

Время на прочтение3 мин
Количество просмотров12K


Предыдущая статья на тему замены человека роботом получила большое количество комментариев. Получается, тема живая не только в наших головах.

Поскольку мы сами вносим вклад в роботизацию как в контексте обучения в нашей Школе, так и в контексте проектов, которые мы делаем, то невольно нам приходится задумываться на предмет того, куда в пределе этот процесс может вести и как избежать сопутствующих ему угроз.

В этой публикации мы решили отчасти ответить на комментарии из предыдущей статьи, отчасти немного дальше развить тему. Если кто-то не читал изначальную публикацию — предлагаем это сделать, а также комментарии к ней.

Итак, давайте временно не будем спорить о том, случится так, что роботы смогут заменить человека или нет. Не случится — ок. Но, вот если случится, то дальнейшее нам видится так:
Читать дальше →
Всего голосов 31: ↑22 и ↓9+13
Комментарии142

Что делать с людьми, которых заменят роботы?

Время на прочтение5 мин
Количество просмотров25K


В этой предновогодней публикации мы решили немного порассуждать о будущем в мире роботов и о роли человека в нем.

Предсказывать будущее в наши дни стало абсолютным must have среди экспертов. Когда технологии меняют мир настолько стремительно, очень хочется заглянуть хотя бы на несколько лет вперед. Цели разные. Потребителям — пофантазировать, восхититься и/или ужаснуться, бизнесам — скорректировать планы, политикам — продумать меры по сохранению спокойствия в социуме на случай «большого технологического шухера».
Читать дальше →
Всего голосов 21: ↑14 и ↓7+7
Комментарии536

Как научить искусственный интеллект продавать

Время на прочтение5 мин
Количество просмотров3.8K


Роботы [пока] не научились поведению человека даже в текстовых чатах, хоть и вовсю пытаются. Но ниша для применения искусственного интеллекта давно есть. Машины не умеют красиво вести беседу, зато на основе больших данных уже облегчают жизнь бизнесу, автоматически подбирая конкретный продукт для конкретного клиента. Контакт-центру остается только связаться с последним и с большой (или как минимум бОльшей) вероятностью завершить продажу. Причем — при гораздо меньших предварительных усилиях со стороны людей.

Мы уже разбирались, что нужно сделать, прежде чем хвататься за работу с моделями, и как собрать толковую команду по оптимизации продаж с помощью big data. Как же теперь соединить продукты бизнеса с клиентами?
Читать дальше →
Всего голосов 3: ↑3 и ↓0+3
Комментарии1

Сколько нужно Data-Scientistов, чтобы закрутить лампочку (или какая команда заставит данные работать на бизнес)

Время на прочтение6 мин
Количество просмотров3.6K


— Сколько нужно дейта-сайентистов, чтобы закрутить лампочку?
— Один, если историческая выборка успешно закрученных лампочек достаточна.

Это, конечно, шутка, но когда в какой-либо компании речь заходит о том, чтобы приручить big data для улучшения бизнес-показателей, далеко не все понимают, кто именно будет приручать. Классическое мнение: нужен дейта сайентист (data scientist) — аналитик данных, который умеет строить модели, разбирается в искусственном интеллекте и машинном обучении. И этот человек в одну голову всё порешает.

Также, есть тренд, что когда в компании формируется подразделение Big Data, то Data Scientistы это те, кого в первую очередь нанимают.

В реальности все сложнее. Без дейта сайентиста, конечно, нет и работы с big data, однако он — один в поле не воин. Кто же еще должен воевать плечом к плечу с ним, лучше понять на примерах.
Читать дальше →
Всего голосов 12: ↑7 и ↓5+2
Комментарии1

Школа Данных: как совместить математику и бизнес

Время на прочтение4 мин
Количество просмотров5.6K
image

Что мешает успешно совместить математику и бизнес?

Этот текст — первая из серии статей о том, как корректно встроить инструменты big data с выгодой для бизнеса.

Маленький спойлер: все получится, если помнить о самом бизнесе.

Еще 5 лет назад крупные компании хотели внедрить у себя новомодную “бигдату”. Но настоящих экспериментаторов было мало. Исключениями стали те, кто точно обладал массой данных: телеком, банковский сектор, интернет-компании. А в 2018 году за экспертизой в больших данных бизнесы приходят сами, причем из самых неожиданных отраслей: металлургия, страхование, авиаиндустрия.
Читать дальше →
Всего голосов 8: ↑7 и ↓1+6
Комментарии8

Школа Данных: хорошее мы сделали еще лучше

Время на прочтение3 мин
Количество просмотров5.3K
image

Привет, Хабр! Надеемся, этим летом не смотря на плохую погоду Вам удалось отдохнуть. Близится осень — самое время поучиться. С учетом предыдущих курсов — мы сильно обновили нашу программу — добавили множество практических занятий, больше говорим про практические кейсы. В этом посте хотелось бы подробно рассказать про все нововведения. Для тех, у кого мало времени:

  • Снизилась цена
  • 8 дополнительных практических семинаров
  • Дополнительные занятия про бизнес
  • Занятия по Deep Learning
  • Доступно удаленное обучение
  • Плюс 2 занятия в Вводном курсе
Читать дальше →
Всего голосов 12: ↑8 и ↓4+4
Комментарии4

Школа данных: можно ли с помощью Big Data влиять на выборы

Время на прочтение4 мин
Количество просмотров5.7K


Привет, Хабр! Можно ли с помощью данных управлять миром? Ну, ответ, очевиден. Вопрос в том, как…

Все уже слышали об успехе компании CambridgeAnalytica в предвыборной гонке Трампа и небезызвестного Brexit.

Статья собрала большое количество поклонников. В ней рассказаны потрясающие результаты, которых позволяет добиться современная аналитика. Однако, эти результаты достижимы только при соблюдении определенных нюансов, о которых умолчали авторы статьи и о которых мы хотели бы рассказать. Эти нюансы могут превратить данную задачу из легко решаемой в невозможную или наоборот.
Читать дальше →
Всего голосов 14: ↑8 и ↓6+2
Комментарии3