Как стать автором
Обновить
64.63
Дата-центр «Миран»
Решения для аренды и размещения ИТ-инфраструктуры

Как работает Wine

Время на прочтение10 мин
Количество просмотров79K
Автор оригинала: Энди Хиппо


Wine — это свободное программное обеспечение для запуска Windows-приложений на нескольких POSIX-совместимых операционных системах, включая Linux, macOS и BSD.

Если вы любите Linux, то наверняка когда-то запускали Wine. Возможно, для какой-то «важной» программы Windows, у которой нет аналога под Линуксом, или поиграться. Забавный факт: даже Steam Deck от Valve запускает игры через оболочку на основе Wine (она называется Proton).

За последний год я намучился с отладчиком, который позволяет одновременно дебажить и Wine, и Windows-приложение в нём. Разобраться во кишочках Wine оказалось очень интересно! Я-то раньше много им пользовался, но никогда не понимал механику целиком. Можно взять файл Windows — и просто запустить его в Linux без каких-либо изменений. Если вы хотите знать, как это сделано, добро пожаловать под кат.

Дисклеймер. В статье реальность сильно упрощается, а многие детали игнорируются. Текст даёт общее представление, как работает Wine.


© «Время приключений» (1 сезон, 18 серия) — прим. пер.

Wine — не эмулятор!


Прежде чем разбираться в работе Wine, нужно сказать, чем он НЕ является. Вообще, W.I.N.E. — это рекурсивный акроним, который расшифровывается как "Wine Is Not an Emulator". Почему? Потому что есть куча отличных эмуляторов и для старых архитектур, и для современных консолей, а Wine принципиально реализован по-другому. Давайте вкратце рассмотрим, как вообще работают эмуляторы.

Представьте простую игровую приставку, которая понимает две инструкции:

  • push <value> — пушит заданное значение в стек
  • setpxl — достаёт три значения из стека и рисует пиксель с цветом arg1 в точке (arg2, arg3)

(вполне достаточно для визуализации классных демок, верно?)

> dump-instructions game.rom
...
# рисуем красную точку по координатам (10,10)
push 10
push 10
push 0xFF0000
setpxl
# рисуем зелёную точку по координатам (15,15)
push 15
push 15
push 0x00FF00
setpxl

Бинарный файл игры (или картридж ROM) представляет собой последовательность таких инструкций, которые аппаратное обеспечение может загрузить в память и выполнить. Нативное железо выполняет их в натуральном режиме, но как запустить старый картридж на современном ноуте? Для этого делаем эмулятор — программу, которая загружает ROM из картриджа в оперативную память и выполняет его инструкции. Это интерпретатор или виртуальная машина, если хотите. Реализация эмулятора для нашей приставки с двумя инструкциями будет довольно простой:

enum Opcode {
    Push(i32),
    SetPixel,
};

let program: Vec<Opcode> = read_program("game.rom");
let mut window = create_new_window(160, 144); // Виртуальный дисплей 160x144 пикселей
let mut stack = Vec::new(); // Стек для передачи аргументов

for opcode in program {
    match opcode {
        Opcode::Push(value) => {
            stack.push(value);
        }
        Opcode::SetPixel => {
            let color = stack.pop();
            let x = stack.pop();
            let y = stack.pop();
            window.set_pixel(x, y, color);
        }
    }
}

Настоящие эмуляторы намного сложнее, но основная идея та же: поддерживать некоторый контекст (память, регистры и т.д.), обрабатывать ввод (клавиатура/мышь) и вывод (например, рисование в каком-то окне), разбирать входные данные (ROM) и выполнять инструкции одну за другой.

Разработчики Wine могли пойти по этому пути. Но есть две причины, почему они так не поступили. Во-первых, эмуляторы и виртуальные машины тормозные по своей сути — там огромный оверхед на программное выполнение каждой инструкции. Это нормально для старого железа, но не для современных программ (тем более видеоигр, которые требовательны к производительности). Во-вторых, в этом нет необходимости! Linux/macOS вполне способны запускать двоичные файлы Windows нативно, их нужно только немного подтолкнуть…

Давайте скомпилируем простую программу для Linux и Windows и сравним результат:

int foo(int x) {
    return x * x;
}

int main(int argc) {
    int code = foo(argc);
    return code;
}


Слева — Linux, справа — Windows

Результаты заметно отличаются, но набор инструкций фактически один и тот же: push, pop, mov, add, sub, imul, ret.

Если бы у нас был «эмулятор», который понимает эти инструкции, то смог бы выполнить обе программы. И такой «эмулятор» существует — это наш CPU.

Как Linux запускает бинарники


Прежде чем запускать чужеродный двоичный файл, давайте разберёмся, как запускается под Linux родной бинарник.

❯ cat app.cc
#include <stdio.h>

int main() {
  printf("Hello!\n");
  return 0;
}

❯ clang app.cc -o app

❯ ./app
Hello!  # работает!

Довольно просто, но давайте копнём глубже. Если сделать .app?

❯ ldd app
        linux-vdso.so.1 (0x00007ffddc586000)
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f743fcdc000)
        /lib64/ld-linux-x86-64.so.2 (0x00007f743fed3000)

❯ readelf -l app

Elf file type is DYN (Position-Independent Executable file)
Entry point 0x1050
There are 13 program headers, starting at offset 64

Program Headers:
  Type           Offset             VirtAddr           PhysAddr
                 FileSiz            MemSiz              Flags  Align
  PHDR           0x0000000000000040 0x0000000000000040 0x0000000000000040
                 0x00000000000002d8 0x00000000000002d8  R      0x8
  INTERP         0x0000000000000318 0x0000000000000318 0x0000000000000318
                 0x000000000000001c 0x000000000000001c  R      0x1
      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
...

Самое главное, что .app — это динамически исполняемый файл. Он зависит от некоторых динамических библиотек и требует их присутствия в рантайме. Иначе не запустится. Другой интересный момент — запрос интерпретатора (requesting program interpreter в последней строке листинга). Какой ещё интерпретатор? Я думал, что C++ — компилируемый язык, в отличие от Python…

В данном контексте интерпретатор — это «динамический загрузчик». Специальный инструмент, которая запускает исходную программу: разрешает и загружает её зависимости, а затем передаёт ей управление.

❯ ./app
Hello!  # Работает!

❯ /lib64/ld-linux-x86-64.so.2 ./app
Hello!  # Тоже работает!

# Домашнее задание: запустите это и попробуйте понять смысл выдачи.
❯ LD_DEBUG=all /lib64/ld-linux-x86-64.so.2 ./app

При запуске исполняемого файла ядро Linux определяет, что файл динамический и требует загрузчика. Затем оно запускает загрузчик, который выполняет всю работу. Это можно проверить, если запустить программу под отладчиком:

❯ lldb ./app
(lldb) target create "./app"
Current executable set to '/home/werat/src/cpp/app' (x86_64).
(lldb) process launch --stop-at-entry
Process 351228 stopped
* thread #1, name = 'app', stop reason = signal SIGSTOP
    frame #0: 0x00007ffff7fcd050 ld-2.33.so`_start
ld-2.33.so`_start:
    0x7ffff7fcd050 <+0>: movq   %rsp, %rdi
    0x7ffff7fcd053 <+3>: callq  0x7ffff7fcdd70            ; _dl_start at rtld.c:503:1

ld-2.33.so`_dl_start_user:
    0x7ffff7fcd058 <+0>: movq   %rax, %r12
    0x7ffff7fcd05b <+3>: movl   0x2ec57(%rip), %eax       ; _dl_skip_args
Process 351228 launched: '/home/werat/src/cpp/app' (x86_64)

Мы видим, что первая выполненная инструкция находится в библиотеке ld-2.33.so, а не в бинарнике .app.

Подводя итог, запуска динамически связанного исполняемого файла в Linux выглядит примерно так:

  1. Ядро загружает образ (≈ двоичный файл) и видит, что это динамический исполняемый файл
  2. Ядро загружает динамический загрузчик (ld.so) и передаёт ему управление
  3. Динамический загрузчик разрешает зависимости и загружает их
  4. Динамический загрузчик возвращает управление исходному двоичному файлу
  5. Оригинальный двоичный файл начинает выполнение в _start() и в конечном итоге доходит до main()

Понятно, почему исполняемый файл Windows не запускается в Linux — у него другой формат. Ядро просто не знает, что с ним делать:

❯ ./HalfLife4.exe
-bash: HalfLife4.exe: cannot execute binary file: Exec format error

Однако если пропустить шаги с первого по четвёртый и каким-то образом перескочить на пятый, то теоретически должно сработать, верно? Ведь с точки зрения операционной системы что значит «запустить» бинарный файл?

В каждом исполняемом файле есть раздел .text со списком сериализованных инструкций CPU:

❯ objdump -drS app

app:     file format elf64-x86-64

...

Disassembly of section .text:

0000000000001050 <_start>:
    1050:       31 ed                   xor    %ebp,%ebp
    1052:       49 89 d1                mov    %rdx,%r9
    1055:       5e                      pop    %rsi
    1056:       48 89 e2                mov    %rsp,%rdx
    1059:       48 83 e4 f0             and    $0xfffffffffffffff0,%rsp
    105d:       50                      push   %rax
    105e:       54                      push   %rsp
    105f:       4c 8d 05 6a 01 00 00    lea    0x16a(%rip),%r8        # 11d0 <__libc_csu_fini>
    1066:       48 8d 0d 03 01 00 00    lea    0x103(%rip),%rcx        # 1170 <__libc_csu_init>
    106d:       48 8d 3d cc 00 00 00    lea    0xcc(%rip),%rdi        # 1140 <main>
    1074:       ff 15 4e 2f 00 00       call   *0x2f4e(%rip)        # 3fc8 <__libc_start_main@GLIBC_2.2.5>
    107a:       f4                      hlt
    107b:       0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
...

Чтобы «запустить» бинарный файл, ОС загружает его в память (в частности, раздел .text), устанавливает указатель текущей инструкции на адрес, где находится код, и всё — исполняемый файл типа «запущен». Как сделать это для исполняемых файлов Windows?

Легко! Просто возьмём код из исполняемого файла Windows, загрузим в память, направим %rip в нужное место — и CPU с радостью выполнит этот код! Если архитектура процессора одинаковая, то процессору вообще без разницы, откуда выполнять ассемблерные инструкции.



Hello, Wine!


По сути, Wine — это «динамический загрузчик» для исполняемых файлов Windows. Это родной двоичный файл Linux, поэтому может нормально запускаться, и он знает, как работать с EXE и DLL. То есть своего рода эквивалент ld-linux-x86-64.so.2:

# запуск бинарника ELF
❯ /lib64/ld-linux-x86-64.so.2 ./app

# запуск бинарника PE
❯ wine64 HalfLife4.exe

Здесь wine64 загружает исполняемый файл Windows в память, анализирует его, выясняет зависимости, определяет, где находится исполняемый код (т. е. раздел .text), и переходит в этот код.

Примечание. В действительности он переходит к чему-то вроде ntdll.dll!RtlUserThreadStart(), это точка входа в «пространство пользователя» в мире Windows. Потом в mainCRTStartup() (эквивалент _start), и в сам main().

На данный момент наша Linux-система выполняет код, изначально скомпилированный для Windows, и всё вроде бы работает. За исключением системных вызовов.

Системные вызовы


Системные вызовы (syscall) — вот где основные сложности. Это вызовы к функциям, которая реализованы не в бинарнике или динамических библиотеках, а в родной ОС. Набор системных вызовов представляет системный API операционной системы. В нашем случае это Windows API.

Примеры системных вызовов в Linux: read, write, open, brk, getpid

Примеры в Windows: NtReadFile, NtCreateProcess, NtCreateMutant ?

Системные вызовы не являются обычными вызовами функций в коде. Открытие файла, например, должно выполняться самим ядром, поскольку именно оно следит за файловыми дескрипторами. Поэтому приложению нужен способ как бы «прервать своё выполнение» и передать управление ядру (эта операция обычно называется переключением контекста).

Набор системных функций и способы их вызова в каждой ОС разные. Например, в Linux для вызова функции read() наш бинарник записывает в регистр %rdi дескриптор файла, в регистр %rsi — указатель буфера, а в %rdx — количество байт для чтения. Однако в ядре Windows нет функции read()! Ни один из аргументов не имеет там смысла. Бинарник Windows использует свой способ выполнения системных вызовов, который не сработает в Linux. Не будем здесь углубляться детали системных вызовов, например, вот отличная статья о реализации в Linux.

Скомпилируем ещё одну небольшую программу и сравним сгенерированный код в Linux и Windows:

#include <stdio.h>

int main() {
    printf("Hello!\n");
    return 0;
}


Слева — Linux, справа — Windows

На этот раз мы вызываем функцию из стандартной библиотеки, которая в конечном итоге выполняет системный вызов. На скриншоте выше версия Linux вызывает puts, а версия Windows — printf. Эти функции из стандартных библиотек (libc.so в Linux, ucrtbase.dll в Windows) для упрощения взаимодействия с ядром. Под Linux сейчас частенько собирают статически связанные бинарники, не зависимые от динамических библиотек. В этом случае реализация puts встроена в двоичный файл, так что libc.so не задействуется в рантайме.

Под Windows до недавнего времени «системные вызовы bcgjkmpjdfkb только вредоносные программы»[нет источника] (вероятно, это шутка автора — прим. пер.). Обычные приложения всегда зависят от kernel32.dll/kernelbase.dll/ntdll.dll, где скрывается низкоуровневая магия тайного общения с ядром. Приложение просто вызывает функцию, а библиотеки заботятся об остальном:


источник

В этом месте вы наверное поняли, что будет дальше. ?

Трансляция системных вызовов в рантайме


А что, если «перехватывать» системные вызовы во время выполнения программы? Например, когда приложение вызывает NtWriteFile(), мы берём управление на себя, вызываем write(), а потом возвращаем результат в ожидаемом формате — и возвращаем управление. Должно сработать. Быстрое решение в лоб для примера выше:

// HelloWorld.exe
lea     rcx, OFFSET FLAT:`string'
call    printf
  ↓↓
// «Фальшивый» ucrtbase.dll
mov edi, rcx   // Преобразование аргументов в Linux ABI
call puts@PLT  // Вызов реальной реализации Linux
  ↓↓
// Real libc.so
mov rdi, <stdout>  // запись в STDOUT
mov rsi, edi       // указатель на "Hello"
mov rdx, 5         // сколько символов писать
syscall

По идее, можно сделать собственную версию ucrtbase.dll со специальной реализацией printf. Вместо обращения к ядру Windows она будет следовать формату интерфейсов Linux ABI и вызывать функцию write из библиотеки libc.so. Однако на практике мы не можем изменять код этой библиотеки по ряду причин — это муторно и сложно, нарушает DRM, приложение может статически ссылаться на ucrtbase.dll и т. д.

Поэтому вместо редактирования бинарника мы внедримся в промежуток между исполняемым файлом и ядром, а именно в ntdll.dll. Это «ворота» в ядро, и Wine действительно предоставляет собственную реализацию. В последних версиях Wine решение состоит из двух частей: ntdll.dll (библиотека PE) и ntdll.so (библиотека ELF). Первая часть — это тоненькая прокладка, которая просто перенаправляет вызовы в ELF-аналог. А уже он содержит специальную функцию __wine_syscall_dispatcher, которая выполняет магию преобразования текущего стека из Windows в Linux и обратно.

Поэтому в Wine системный вызов выглядит следующим образом:



Диспетчер системных вызовов — это мост между мирами Windows и Linux. Он заботится о соглашениях и стандартах для системных вызовов: выделяет пространство стека, перемещает регистры и т. д. Когда выполнение переходит к библиотеке Linux (ntdll.so), мы можем свободно использовать любые нормальные интерфейсы Linux (например, libcили syscall), реально читать/записывать файлы, занимать/отпускать мьютексы и так далее.

И это всё?


Звучит почти слишком просто. Но так и есть. Во-первых, под Windows много разных API. Они плохо документированы и имеют известные (и неизвестные, ха-ха) ошибки, которые следует воспроизвести в точности. (Вспомните, как при разработке Windows 95 туда скопировали утечку памяти из SimCity, чтобы популярная игра не крашилась в новой ОС. Возможно, такие специфические вещи приходится воспроизводить под Linux для корректной работы конкретных программ — прим. пер.). Большая часть исходного кода Wine — это реализация различных Windows DLL.

Во-вторых, системные вызовы можно выполнять по-разному. Технически ничто не мешает Windows-приложению выполнить прямой системный вызов через syscall, и в идеале это тоже должно работать (как мы уже говорили, Windows-игры делают всякие безумные вещи). В ядре Linux специальный механизм для обработки таких ситуаций, который, конечно, добавляет сложности.

В-третьих, весь этот бардак 32 vs 64 бит. Есть много старых 32-битных игр, которые никогда не перепишут на 64 бита. В Wine есть поддержка обеих платформ. И это тоже плюс к общей сложности.

В-четвертых, мы даже не упомянули wine-server — отдельный процесс Wine, который поддерживает «состояние» ядра (открытые дескрипторы файлов, мьютексы и т. д.).

И последнее… о, так вы хотите запустить игру? А не просто hello world? Ну так это совсем другое дело! Тогда нужно разобраться с DirectX, со звуком (привет, PulseAudio, старый друг), устройствами ввода (геймпады, джойстики) и т. д. Куча работы!

Wine разрабатывался в течение многих лет и прошёл долгий путь. Сегодня вы без проблем запускаете под Linux самые последние игры, такие как Cyberpunk 2077 или Elden Ring. Чёрт возьми, иногда производительность Wine даже выше, чем у Windows! В какое замечательное время мы живём…



P. S. На всякий случай повторим дисклеймер: статья даёт только базовое представление о работе Wine. Многие детали упрощены или опущены. Так что не судите очень строго, пожалуйста.
Теги:
Хабы:
Всего голосов 188: ↑187 и ↓1+230
Комментарии48
1

Публикации

Информация

Сайт
miran.ru
Дата регистрации
Дата основания
Численность
51–100 человек
Местоположение
Россия