Как стать автором
Обновить
73.03
Росатом
Работа на стыке науки и ИТ
Сначала показывать

Модель запроектной аварии с потерей теплоносителя

Уровень сложности Средний
Время на прочтение 6 мин
Количество просмотров 2.5K

Добрый день!

В последние годы проектирование ядерных реакторов нового поколения стало одним из векторов развития атомной энергетики во всем мире. Стоит отметить, что главным приоритетом в создании таких энергетических установок по-прежнему остается обеспечение безопасности.

Несмотря на высокую надежность систем безопасности АЭС с реакторной установкой ВВЭР-1200, всё ещё остается малая вероятность возникновения событий, которые могут привести к расплаву активной зоны. Наиболее опасной с точки зрения вероятности преодоления барьеров безопасности является авария, сопровождающаяся расплавом активной зоны и внутриреакторных элементов.

В связи с этим фактом, предлагаю сегодня смоделировать такую ситуацию, а именно:

смоделируем протекание запроектной аварии с потерей теплоносителя, при большой течи, с отказом САОЗ высокого и низкого давления на аналитическом тренажере ЛАЭС-2 (ВВЭР-1200). Таким образом, представим, что происходит потеря охлаждения топлива, сопровождающаяся выходом из строя системы аварийного охлаждения;

проанализируем различные параметры аварии, включая изменение температуры топлива, давления в реакторе, а также другие параметры, влияющие на протекание аварии;

сравним полученные результаты расчета запроектной аварии на тренажере с данными из Предварительного отчета по безопасности (ПООБ);

сделаем вывод о точности моделирования теплогидравлических процессов на тренажере-имитаторе ЛАЭС-2 (ВВЭР-1200).

Ссылка на телеграм-канал REPEAT: https://t.me/repeatlab

Читать далее
Всего голосов 7: ↑6 и ↓1 +5
Комментарии 10

Разработка модели системы обогрева дома

Уровень сложности Средний
Время на прочтение 4 мин
Количество просмотров 2.6K

При разработке системы обогрева, важную роль играет описание тепловой модели дома, позволяя позволяет оценить и оптимизировать энергетическую эффективность системы. Тепловая модель представляет собой математическую аппроксимацию поведения тепла внутри дома, учитывая различные факторы - такие, как теплопроводность материалов стен и крыши, размеры помещений, изоляция, а также параметры системы отопления.

Тепловая модель дома позволяет оценить распределение тепла внутри помещений и выявить потенциальные участки перегрева или недостаточного обогрева. Она учитывает теплопотери через стены, окна, двери и другие элементы конструкции дома, а также тепловые источники – например, отопительные приборы и солнечное излучение.

С использованием тепловой модели можно проводить различные расчеты и оптимизации системы обогрева, чтобы достичь комфортных условий внутри дома при минимальных затратах на энергию. Например, модель может помочь определить оптимальное расписание работы системы обогрева, позволяющее поддерживать комфортную температуру в разных зонах дома в зависимости от времени суток и наличия жильцов.

В данной статье будет рассмотрена разработка тепловой модели для системы обогрева дома с использованием программного обеспечения REPEAT. Это ПО позволяет моделировать и анализировать тепловые процессы внутри дома, учитывая различные факторы и параметры. Результаты моделирования могут быть использованы для принятия технологических решений по энергетической эффективности и оптимизации системы обогрева, что в конечном итоге способствует комфорту и экономии ресурсов для домохозяйств.

Ссылка на телеграм-канал REPEAT: https://t.me/repeatlab

Читать далее
Всего голосов 3: ↑3 и ↓0 +3
Комментарии 16

Предсказываем цены с помощью методов анализа данных и машинного обучения

Уровень сложности Средний
Время на прочтение 10 мин
Количество просмотров 7.7K

Привет, Хабр! Вас приветствуют Нане Бегларян (инженер данных) и Дмитрий Распопов (эксперт отдела искусственного интеллекта) из компании «Цифрум» Госкорпорации «Росатом». В этой статье мы поговорим с вами о задаче, связанной с разработкой комплексной модели для прогнозирования цен на электроэнергию, которая позволяет обеспечить стабильность и надежность работы энергосистемы; делается это в рамках совместного проекта компаний Росатома РЭИН и «Цифрум».

Цены на электроэнергию могут значительно колебаться в зависимости от множества факторов, что может привести к нестабильности и непредсказуемости в работе энергосистемы.  (и росту цифр в коммунальных счетах).

 Чтобы было легче морально готовиться к очередной оплате (и заодно потренировать свои знания в ML), делимся с вами опытом и знаниями в области прогнозирования цен на электроэнергию с помощью методов анализа данных и машинного обучения.

Читать далее
Всего голосов 4: ↑4 и ↓0 +4
Комментарии 18

Моделирование систем электромобиля

Время на прочтение 2 мин
Количество просмотров 2K

Предлагаем научиться созданию достоверной модели электромобиля, описывающей процессы в части механики, электрики и электрохимии. Результаты верифицированы посредством сравнения с аналогичной моделью в программном комплексе AmeSim.

Читать далее
Всего голосов 3: ↑3 и ↓0 +3
Комментарии 7

Разработка трёхмассовой тепловой модели асинхронного тягового двигателя

Уровень сложности Средний
Время на прочтение 2 мин
Количество просмотров 2.1K

Разработка и постройка технологически сложных деталей огромных промышленных тяговых электродвигателей будет очень затратными и нерациональными мероприятием, если отсутствует необходимая базовая расчетная модель. В данной статье продемонстрирована разработка трёхмассовой тепловой модели асинхронного тягового двигателя с использованием ПО REPEAT. Трёхмассовая модель двигателя включает в себя ротор, статорную обмотку и магнитопровод статора с корпусом. Увеличение количества масс по сравнению с одно- и двухмассовыми моделями делает модель более точной и пригодной для расчетов. Вместе с этим увеличивается количество необходимой информации в виде конструктивных размеров и коэффициентов теплопроводностей и теплоотдачи.

Читать далее
Всего голосов 7: ↑6 и ↓1 +5
Комментарии 5

Как выигрывать соревнования по программированию

Уровень сложности Простой
Время на прочтение 12 мин
Количество просмотров 19K

Я регулярно участвую в различных хакатонах и конкурсах по программированию, и довольно часто удаётся выигрывать.Рассказываю о внутренней кухне, вспоминаю поучительные истории с хакатонов и делюсь секретами успеха.

Читать далее
Всего голосов 39: ↑20 и ↓19 +1
Комментарии 29

Зачем мы моделируем импульсные нейронные сети и с помощью чего это делаем

Время на прочтение 17 мин
Количество просмотров 4.9K

Привет, Хабр! На связи Михаил Киселев, руководитель направления в отделе ИИ компании «Цифрум» (Росатом) и руководитель лаборатории нейроморфных вычислений в Чувашском государственном университете. Сегодня подниму тему импульсных нейронных сетей. Общее представление о том, что такое искусственные нейронные сети, есть, наверное, у всех. Многие представляют, зачем они нужны, как устроены, как работают. Речь пойдет об одной их разновидности – импульсных нейронных сетях (ИНС). Нейросети вообще мыслились их создателями как компьютерные модели ансамблей нервных клеток мозга – это и из их названия следует. У разных типов нейросетей степень этого сходства разная. Так вот, ИНС – это самый похожий на биологический мозг тип нейронных сетей.

За счет этой похожести достигаются немалые преимущества. Прежде всего – энергоэкономичность нейропроцессоров. Почему же тогда мы не видим вокруг себя эти импульсные сети – в смартфонах, камерах, умных часах, умных утюгах?

Читать далее и узнать, почему же
Всего голосов 17: ↑15 и ↓2 +13
Комментарии 49

Python в атомной энергетике: сообразительные нейроморфы, предсказание поломок и анализ нормативки

Время на прочтение 14 мин
Количество просмотров 19K

Атомная энергетика — отрасль наукоёмкая. Python со своими инструментами для анализа данных и построения ИИ как раз подходит АЭС, здесь с ним можно решать амбициозные задачи на острие науки о данных. Поэтому Хабр решил разузнать побольше про Python в Росатоме. И попросил меня помочь.

Меня зовут Тимур Тукаев, я IT-редактор. Начал писать о технологиях в 2007, когда поставил свой первый Linux. Увлечён идеями свободного ПО и open source, программирую на Kotlin, делаю о нём топики в JetBrains Academy.

Я пообщался с тремя инженерами Росатома и выяснил, для чего в корпорации используют Python. Рассказываю под катом.

Для чего же?
Всего голосов 20: ↑19 и ↓1 +18
Комментарии 8

Программная роботизация атомной отрасли – от простых роботов к сложным

Время на прочтение 6 мин
Количество просмотров 1.9K

Выгрузить данные, свести отчет, сделать рассылку… Эти рутинные задачи «съедают» часы рабочего времени, которые с гораздо большей пользой можно было бы потратить на анализ показателей, планирование и развитие. Все эти задачи можно быстро и малозатратно перекинуть на виртуальных ассистентов — программных роботов.

Программный робот, или RPA (Robotic process automation) — технология для быстрого создания и запуска приложений-«роботов», способных имитировать действия человека при работе с системами, программами, почтой, базами данных и другим софтом.

Главная цель разработки роботов — избавиться от повторяющихся задач, не требующих сложной аналитики и «творчества», избавиться от рутинных действий, на которые ежедневно или еженедельно уходит по несколько часов рабочего времени. Речь о внесении новой информации в базы данных, составлении рассылок, сведении и форматировании данных из разных систем. Конечно, есть системы, в которых часть этих задач автоматизирована, но, когда дело касается всего процесса или сразу нескольких процессов, в игру вступают системы с разным интерфейсом и возможностями. В итоге сводить все воедино все равно приходится человеку.

Проблемы можно было бы решить созданием единой системы, но проект ее разработки и внедрения будет долгим, дорогостоящим и вряд ли эффективным. Более того, в такой системе никогда не будут реализованы надстройки и доработки, упрощающие работу небольшой команде людей или даже одному человеку. Решение — программные роботы. Они могут быть индивидуальными, «мостиком» между огромными системами и задачами конкретного сотрудника.

Читать далее
Всего голосов 3: ↑2 и ↓1 +1
Комментарии 3

Обзор метрик обнаружения аномалий (плюс много дополнительной информации)

Время на прочтение 10 мин
Количество просмотров 8.2K

Привет, Хабр! На связи снова Юрий Кацер, эксперт по ML и анализу данных в промышленности, а также руководитель направления предиктивной аналитики в компании «Цифрум» Госкорпорации “Росатом”.

До сих пор рамках рабочих обязанностей решаю задачи поиска аномалий, прогнозирования, определения остаточного ресурса и другие задачи машинного обучения в промышленности. В рамках рабочих задач мне приходится часто сталкиваться с проблемой правильной оценки качества решения задачи, и, в частности, выбора правильной data science метрики в задачах обнаружения аномалий.

Читать далее
Всего голосов 8: ↑8 и ↓0 +8
Комментарии 3

Проблемы качества промышленных данных (временных рядов)

Время на прочтение 3 мин
Количество просмотров 2.6K

Привет, Хабр! На связи Юрий Кацер, эксперт по ML и анализу данных в промышленности, а также руководитель направления предиктивной аналитики в компании «Цифрум» Госкорпорации “Росатом”. В рамках рабочих обязанностей я решаю задачи в промышленности с помощью машинного обучения. 

Большую часть работы по созданию моделей составляет работа с промышленными данными. В условиях стремительного роста объема информации, собираемой на производственных предприятиях в связи с развитием интернета вещей (сбор и хранение данных), важным аспектом становится качество таких данных. В то же время проблемы и ошибки в них становятся препятствием для применения методов машинного обучения и построения моделей на основе законов физики или предметной области. Такие проблемы, как выбросы, пропуски, изменение частоты дискретизации, шум, искажают результаты или делают невозможным практическое использование данных для машинного обучения.

В этой статье мы посмотрим на часто встречающиеся проблемы в промышленных данных типа временных рядов. О том, что такое временной ряд, и о других особенностях задач в промышленности я рассказываю в других статьях на хабре, рекомендую познакомиться, а мы пока перейдем к сути! На схеме ниже приведен большой список проблем в данных, о которых мы поговорим в статье.

Читать далее
Всего голосов 6: ↑4 и ↓2 +2
Комментарии 11

Опыт проектов с ИИ в промышленности на примере проекта по обеспечению контроля технического состояния электролизеров

Время на прочтение 10 мин
Количество просмотров 2.6K

Привет, Хабр! На связи Юрий Кацер, эксперт ML и анализу данных в промышленности, а также руководитель направления предиктивной аналитики в компании «Цифрум» Госкорпорации “Росатом”.

Недавно я выступил с докладом о том, как в рамках проекта по предиктивной аналитике на производстве мы разрабатывали систему и алгоритмы контроля технического состояния электролизера. По сути, мы разработали систему предиктивной аналитики, возились с поиском работающих подходов, долго мучались с данными о состоянии оборудования и извлекали из умов технологического персонала информацию о работе установок.

Сегодня хочу поговорить на примере этого проекта о реализации data science проектов в промышленности. С подобным докладом я также выступал ранее, видео выступления доступно по ссылке. Обычно нашей основной задачей является разработка моделей на основе данных, но работает ли такой подход всегда? Давайте поговорим об основных этапах и проблемах таких проектов и посмотрим, как мы двигались к финальному результату на примере проекта по диагностике электролизеров.

Читать далее
Всего голосов 9: ↑6 и ↓3 +3
Комментарии 1

Чемпионаты стандартов WorldSkills: как решать кейсы, справляться с волнением и зачем вообще участвовать

Время на прочтение 14 мин
Количество просмотров 1.6K

Всем привет!

Сегодня хотим поговорить с вами об участии в чемпионатах, хакатонах, соревнованиях. Меня зовут Максим Межов, я аналитик отдела предиктивного анализа компании «Цифрум» (Госкорпорация «Росатом») и уже дважды участвовал в чемпионатах, построенных на концепции WorldSkills. Эти соревнования задают стандарты технической подготовки и квалификации специалистов. Кроме оригинального чемпионата, в ряде организаций проводятся ещё внутренние. Например, в Росатоме – это AtomSkills.

Зачем участвовать в чемпионатах?

В первую очередь, для самого себя. Не все чемпионаты подразумевают награду, могут грамоту выдать. Самое главное – это возможность перезагрузиться, заново взглянуть на привычные процессы, попробовать себя в новом и оценить свои силы. Стрессануть и получить заряд адреналина.

А ещё в соревнованиях такого типа участникам дают решать реальные задачи, настоящие проблемы, с которыми сталкиваются компании на производстве. Бывают также хакатоны, где участники работают с искусственными данными, проверяют подходы, смотрят, кто лучше сделает модель, такой опыт тоже полезен, но его сложнее потом применить в жизни.

Как проходят чемпионаты

Марафоны с окончанием «skills» построены по модели известного чемпионата Worldskills. Так, DigitalSkills-2021 длился 3 дня. Каждый день мы, участники, садились спиной к спине за компьютеры и в течение определенного  времени решали модуль за модулем. По сути, это как сдать 6 экзаменов за 3 дня. К каждому дню надо готовиться, работать 2 модуля, по 3 часа. В середине модуля нам давали перерыв около 15 минут и один перерыв на обед между модулями. Мобильные телефоны, прочая собственная вычислительная техника запрещены. Только выданные компьютеры, у всех одинаковые.

Читать далее
Всего голосов 2: ↑2 и ↓0 +2
Комментарии 2

Как я дообучал Tesseract и что из этого получилось

Время на прочтение 7 мин
Количество просмотров 25K

Решал я как-то задачку по поиску сущностей в отсканированных документах. Чтобы работать с текстом, надо его сначала получить из картинки, поэтому приходилось использовать OCR. Выбор пал на одну из самых популярных и доступных библиотек Tesseract. С ее помощью задача решается очень неплохо и процент распознавания текста достаточно высокий, особенно на хороших сканах. Но нет предела совершенству, а так же ввиду наличия большого количества документов сомнительного качества, поулучшав пайплайн разными методами, было принято решение попробовать улучшить и сам тессеракт.

Инструкция от разработчиков https://tesseract-ocr.github.io/tessdoc/Home.html не всегда сразу понятна и очевидна, поэтому и появилась мысль записать свой опыт в эту статью.

У меня на компьютере стоит Linux Mint 20.2 Cinnamon, поэтому все действия происходят в этой системе и я не могу гарантировать, что все получится точно так же в Windows или Mac.

Для начала необходимо установить бибилиотеку tesseract на компьютер. Делается это достаточно просто. Сначала проверю версию, которая уже установлена (как правило в комплекте с Linux уже есть пакет tesseract). В терминале набираем

Читать далее
Всего голосов 11: ↑11 и ↓0 +11
Комментарии 6

Моделируем релейные защиты и противоаварийную автоматику для полномасштабных и аналитических тренажеров АЭС и ТЭС

Время на прочтение 4 мин
Количество просмотров 2.8K

Уважаемые читатели, добрый день!

Многие представляют АЭС и ТЭС как некие сложные установки и системы малопонятных процессов, но пользу от работы атомных и тепловых электростанций понимают практически все. Чтобы повышать безопасность и эффективность работы на станции, оперативный персонал должен постоянно совершенствовать свою профессиональную подготовку. И если реальная станция здесь не помощник, то полномасштабные и аналитические тренажеры – как раз то, что надо. Настолько то, что все приборы, ключи управления точно воспроизводят аппаратуру по составу, цвету, размерам, форме. Информацию, которая отображается на мониторах и индикаторах, не отличить по величине и внешнему виду от той, которая дается на энергоблоке. Ловкость рук, и никакого мошенничества!

Читать далее
Всего голосов 8: ↑8 и ↓0 +8
Комментарии 17

Информация

Сайт
rosatom.ru
Дата регистрации
Дата основания
Численность
свыше 10 000 человек
Местоположение
Россия