Как стать автором
Обновить
63.08
Wunder Fund
Мы занимаемся высокочастотной торговлей на бирже
Сначала показывать

Что внутри черного ящика: понимаем работу ML-модели с помощью SHAP

Уровень сложности Сложный
Время на прочтение 9 мин
Количество просмотров 1.2K
Блог компании Wunder Fund Машинное обучение *
Туториал
Перевод

Значения Шепли применяются в экономике, а точнее — в теории кооперативных игр. Такие значения назначаются игрокам сообразно их вкладу в игру. В сфере машинного обучения идея использования значений Шепли нашла отражение во фреймворке SHAP (SHapley Additive exPlanations). Он представляет собой эффективный инструмент для интерпретации механизмов функционирования моделей.

Если вам интересны подробности о значениях Шепли — очень рекомендую обратиться к моей предыдущей статье, посвящённой математическим и интуитивным представлениям, раскрывающим смысл этих значений. И хотя в машинном обучении эти значения применяются по‑особенному, понимание базовых принципов, на которых они основаны, может оказаться полезным.

Использование значений Шепли во фреймворке SHAP напоминает их классическое применение тем, что они отражают индивидуальное влияние признаков на «игру» (другими словами — на модель машинного обучения). Но модели машинного обучения — это «игры», где нет «кооперирования» игроков, то есть — признаки не обязательно взаимодействуют друг с другом, как это происходило бы, будь они игроками в кооперативной игре. Вместо этого каждый из признаков вносит независимый вклад в результаты работы модели. Хотя тут может быть использована формула для нахождения значений Шепли, соответствующие вычисления могут оказаться слишком «тяжёлыми» и неточными. Это так из‑за большого количества «игроков» и из‑за того, что они могут объединяться в «союзы». Для того чтобы решить эту проблему, исследователи разработали альтернативные подходы. Среди них — метод Монте‑Карло и ядерные методы. В этом материале мы будем заниматься методом Монте‑Карло.

Читать далее
Всего голосов 11: ↑11 и ↓0 +11
Комментарии 1

Поймай меня, если сможешь: руководство по обработке исключений в Python

Уровень сложности Средний
Время на прочтение 8 мин
Количество просмотров 6.6K
Блог компании Wunder Fund Python *Программирование *Отладка *
Туториал
Перевод

Люди, которые пишут код, часто воспринимают работу с исключениями как необходимое зло. Но освоение системы обработки исключений в Python способно повысить профессиональный уровень программиста, сделать его эффективнее. В этом материале я разберу несколько тем, изучение которых поможет всем желающим раскрыть потенциал Python через разумный подход к обработке исключений.

Читать далее
Всего голосов 14: ↑14 и ↓0 +14
Комментарии 21

Scrum не нужен. Нужно лишь правильно использовать Kanban

Уровень сложности Простой
Время на прочтение 11 мин
Количество просмотров 6.2K
Блог компании Wunder Fund Управление разработкой *Управление проектами *Agile *Управление продуктом *
Мнение
Перевод

Почему вы выбрали фреймворк Scrum, а не метод управления проектами Kanban? Не можете ответить? Значит — лично вы Scrum и не выбирали. Кто-то сделал это за вас.

Даже в тех редких случаях, когда люди способны ответить на вышеприведённый вопрос, их мотивы раскрывают глубокие заблуждения относительно Kanban. Выражаются эти заблуждения в упоминании следующих причин выбора Scrum:

Читать далее
Всего голосов 30: ↑26 и ↓4 +22
Комментарии 14

StackLLaMA: практическое руководство по обучению LLaMA с помощью RLHF

Уровень сложности Сложный
Время на прочтение 15 мин
Количество просмотров 4.2K
Блог компании Wunder Fund Python *Алгоритмы *Машинное обучение *Искусственный интеллект
Туториал
Перевод

ChatGPTGPT-4 и Claude — это мощные языковые модели, которые дообучают, используя метод, который называется «обучение с подкреплением на основе отзывов людей» (Reinforcement Learning from Human Feedback, RLHF). Благодаря этому такие модели лучше отражают наши ожидания в плане их поведения, они лучше соответствуют тому, как мы собираемся их использовать.

В этом материале мы рассмотрим процесс обучения модели LLaMa c использованием RLHF. Модель будет учиться отвечать на вопросы с сайта Stack Exchange.

Читать далее
Всего голосов 24: ↑24 и ↓0 +24
Комментарии 0

Осваивают ли LLM модели мира, или лишь поверхностную статистику?

Уровень сложности Средний
Время на прочтение 15 мин
Количество просмотров 11K
Блог компании Wunder Fund Машинное обучение *Искусственный интеллект
Перевод

Большие языковые модели (Large Language Model, LLM) сейчас у всех на слуху. Они привлекают внимание общественности своей, казалось бы, впечатляющей возможностью — составлять осмысленные тексты в ответ на запрос пользователя (иногда такие запросы называют «приглашениями», а так же — «промптами» или «промтами» — от английского «prompt»). Эти системы представляют собой тщательно сконструированные комбинации из исключительно простых алгоритмов, огромных объёмов данных и грандиозных вычислительных мощностей. LLM учатся, бесчисленное множество раз играя сами с собой в игру «угадай следующее слово». В каждом раунде такой игры модель смотрит на часть предложения и пытается угадать, или предсказать, следующее слово. Если слово угадано — модель обновляет параметры для того чтобы подкрепить свою уверенность; в противном случае модель учится на своей ошибке для того чтобы в следующий раз её догадка была бы точнее.

Хотя базовый алгоритм обучения LLM, по большому счёту, уже давно не меняется, недавнее увеличение размеров моделей и данных наделило эти модели качественно новыми возможностями. Среди них — написание простого программного кода и решение логических задач.

Как эти модели достигли таких результатов? Они всего лишь запоминают обучающие данные и потом их воспроизводят, или они схватывают правила английской грамматики и усваивают синтаксис языка C? Создают ли они нечто вроде внутренней модели мира — доступной для понимания модели процесса, выдающего некие последовательности данных?

Читать далее
Всего голосов 43: ↑42 и ↓1 +41
Комментарии 41

Ускорение работы моделей Stable Diffusion на процессорах Intel

Уровень сложности Сложный
Время на прочтение 8 мин
Количество просмотров 3.2K
Блог компании Wunder Fund Python *Программирование *Машинное обучение *
Перевод

Недавно мы рассказывали о последнем поколении процессоров Intel Xeon (кодовое название Sapphire Rapids). Мы говорили об их новых аппаратных возможностях, ориентированных на ускорение задач глубокого обучения,  разбирались с тем, как использовать их для ускорения распределённого дообучения трансформеров, занимающихся обработкой естественного языка, как применять их для ускорения работы таких моделей.

В этом материале мы собираемся остановиться на различных подходах к ускорению моделей Stable Diffusion на процессорах Sapphire Rapids. В следующем похожем посте речь пойдёт о распределённом дообучении.

Читать далее
Всего голосов 16: ↑16 и ↓0 +16
Комментарии 2

Модульное глубокое обучение

Уровень сложности Сложный
Время на прочтение 14 мин
Количество просмотров 2.4K
Блог компании Wunder Fund Алгоритмы *Машинное обучение *Искусственный интеллект
Обзор
Перевод

В этом материале приведён краткий обзор использования модульного подхода в задачах глубокого обучения. Более детальный разбор этой темы вы можете найти здесь. Если вас интересует модульный подход к тонкой настройке (дообучению) моделей обработки естественного языка — взгляните на наше учебное руководство 2022 года по EMNLP. Дополнительные материалы по модульному глубокому обучению вы можете найти на этом ресурсе.

Читать далее
Всего голосов 14: ↑14 и ↓0 +14
Комментарии 1

Учимся совершать правильные ошибки — краткое сравнение человеческого восприятия и мультимодальных языковых моделей

Уровень сложности Сложный
Время на прочтение 8 мин
Количество просмотров 1.9K
Блог компании Wunder Fund Алгоритмы *Искусственный интеллект
Туториал
Перевод

Представьте, что вы, совершенно один, отдыхаете в своём маленьком бревенчатом домике в лесу. Когда вы, декабрьским вечером, начинаете читать уже вторую книгу из списка «Книги недели», вы слышите поблизости чьи-то тяжёлые шаги. Вы бросаетесь к окну, чтобы посмотреть — кто это там прошёл. Через окно вы видите крупный силуэт кого-то, кто, кажется, покрыт мехом. Существо исчезает в тёмном лесу сразу за вашим крыльцом. Информация, которую вы получили из окружающей среды, прямо-таки кричит вам: «Я встретил снежного человека!». Но ваш здравый рассудок говорит, что это был, с гораздо большей вероятностью, просто слишком увлечённый путешествием турист, который прошёл мимо вашего дома.

Вы только что успешно совершили «правильную ошибку», предположив, что у вас за окном, вероятно, путешественник, несмотря на то, что имеющаяся у вас информация свидетельствует о другом. Ваш мозг нашёл «рациональное объяснение» исходной информации благодаря имеющимся у вас годам опыта жизни в лесу.

Читать далее
Всего голосов 17: ↑17 и ↓0 +17
Комментарии 2

Самая маленькая хеш-таблица в мире

Уровень сложности Сложный
Время на прочтение 17 мин
Количество просмотров 10K
Блог компании Wunder Fund Программирование *Алгоритмы *Rust *
Перевод

1 декабря я в очередной раз поучаствовал в Advent of Code, написав программу на Rust. Если интересно — код можно найти на GitHub. Тут мне хотелось бы рассказать о моём решении задачи, предлагавшейся во 2 день мероприятия, так как это решение, с одной стороны, сверх всякой меры оптимизировано, а с другой — демонстрирует кое-какие полезные приёмы. Чтобы не усложнять себе жизнь — мы рассмотрим лишь первую часть задачи, но те же приёмы можно применить и к её второй части.

Читать далее
Всего голосов 38: ↑38 и ↓0 +38
Комментарии 12

Как нанять талантливого программиста и никому не навредить

Уровень сложности Простой
Время на прочтение 8 мин
Количество просмотров 6.1K
Блог компании Wunder Fund Программирование *Управление персоналом *Карьера в IT-индустрии
Перевод

Этот материал посвящён формированию культуры технических собеседований, проводимых с учётом потребностей людей и с уважением к ним.

Читать далее
Всего голосов 32: ↑28 и ↓4 +24
Комментарии 7

Полное руководство по модулю asyncio в Python. Часть 9

Уровень сложности Средний
Время на прочтение 16 мин
Количество просмотров 6.1K
Блог компании Wunder Fund Python *Программирование *
Туториал
Перевод

Публикуем девятую, заключительную часть (12345678) перевода руководства по модулю asyncio в Python. Здесь вы найдёте разделы исходного материала с 23 по 26.

Читать далее
Всего голосов 21: ↑20 и ↓1 +19
Комментарии 2

Бухучёт для программистов

Уровень сложности Средний
Время на прочтение 11 мин
Количество просмотров 7K
Блог компании Wunder Fund Программирование *Алгоритмы *Финансы в IT
Туториал
Перевод

Любому образованному человеку непременно нужно иметь общее представление о бухгалтерском учёте. Так же, как и математика, естественные науки, программирование, музыка, литература, история, да и много чего ещё, бухучёт — это одна из тех сфер знаний, которые помогают нам понимать этот мир. Хотя работа с деньгами — не особо увлекательное занятие, это — неотъемлемая часть жизни, поэтому вполне можно уделить некоторое время на то, чтобы в этом разобраться.

Я полагаю, что, к сожалению, большинство бухгалтеров совсем не умеют понятно рассказывать о том, чем они занимаются, объяснять это другим людям. Бухучёт — это область, полная жаргона, акронимов, странных терминов, пришедших из глубины веков. Да у меня даже от книги «Бухучёт для чайников» кружится голова. А на самом деле, наверняка, всё это не может быть таким уж сложным.

(Мы, люди, которые работают с компьютерами, возможно, повинны в том же самом: в непонятных рассказах о своём деле и в использовании жаргона. Проблема в том, что, как только некто глубоко погружается в некую сферу знаний, ему оказывается очень сложно представить себе, как он видел то, что теперь ему хорошо знакомо, до того, как он в этом разобрался.)

В конце концов меня постигло озарение: основа бухучёта — это просто теория графов. Традиционные способы представления финансовой информации удивительно хорошо скрывают эту базовую структуру. Но после того, как я понял, что бухгалтерский учёт — это работа с графами — внезапно всё, что было мне неясно, обрело смысл.

Читать далее
Всего голосов 20: ↑19 и ↓1 +18
Комментарии 3

Полное руководство по модулю asyncio в Python. Часть 8

Время на прочтение 24 мин
Количество просмотров 5.5K
Блог компании Wunder Fund Python *Программирование *
Туториал
Перевод

Перед вами восьмая часть (1234567) перевода руководства по модулю asyncio в Python. Здесь вы найдёте разделы исходного материала с 20 по 22.

Читать далее
Всего голосов 15: ↑15 и ↓0 +15
Комментарии 2

Пара HTTP-заголовков, о которых, похоже, не знают разработчики

Время на прочтение 5 мин
Количество просмотров 11K
Блог компании Wunder Fund Разработка веб-сайтов *Серверное администрирование *
Туториал
Перевод

Вот какое дело: как показывают мои изыскания, большинство веб-разработчиков поразительно мало знают об HTTP-заголовках или, в целом, о стандарте HTTP. Я имею в виду, что я понимаю то, что во многих университетах и школах, вероятно, этому не учат (там, где я учился, определённо, так и было). А кто будет, сидя дома праздным воскресным утром, думать о том, чтобы развлечь себя чтением стандарта HTTP? Да никто. Знаю, но… есть одно важное обстоятельство: отсутствие хоть какого-то понимания стандарта HTTP — это зияющая дыра в знаниях веб-разработчиков, в знаниях многих из тех, кто это читает. Предлагаю это исправить.

Читать далее
Всего голосов 52: ↑33 и ↓19 +14
Комментарии 19

Полное руководство по модулю asyncio в Python. Часть 7

Время на прочтение 21 мин
Количество просмотров 6.3K
Блог компании Wunder Fund Python *Программирование *
Туториал
Перевод

Публикуем седьмую часть (12345, 6) перевода руководства по модулю asyncio в Python. Здесь представлены разделы исходного материала с 17 по 19.

Читать далее
Всего голосов 17: ↑17 и ↓0 +17
Комментарии 2

Полное руководство по модулю asyncio в Python. Часть 6

Время на прочтение 18 мин
Количество просмотров 8K
Блог компании Wunder Fund Python *Программирование *
Туториал
Перевод

Привет, Хабр! Перед вами шестая часть (12345) перевода руководства по модулю asyncio в Python. Здесь представлены 14-16 разделы исходного материала.

Читать далее
Всего голосов 19: ↑19 и ↓0 +19
Комментарии 1

Полное руководство по модулю asyncio в Python. Часть 5

Время на прочтение 19 мин
Количество просмотров 11K
Блог компании Wunder Fund Python *Программирование *
Туториал
Перевод

Привет, Хабр! Публикуем пятую часть (перваявтораятретьячетвёртая) перевода руководства по модулю asyncio в Python. Здесь представлены разделы оригинала с №10 по №13.

Читать далее
Всего голосов 20: ↑20 и ↓0 +20
Комментарии 0

Полное руководство по модулю asyncio в Python. Часть 4

Время на прочтение 12 мин
Количество просмотров 8K
Блог компании Wunder Fund Python *Программирование *
Перевод

Сегодня, в четвёртой части (перваявтораятретья) перевода учебного руководства по модулю asyncio в Python, представляем вашему вниманию разделы оригинала №8 и 9.

Читать далее
Всего голосов 20: ↑20 и ↓0 +20
Комментарии 0

Стратегии роста Notion. Часть 2

Время на прочтение 21 мин
Количество просмотров 2.2K
Блог компании Wunder Fund Программирование *Управление разработкой *Развитие стартапа Бизнес-модели *
Перевод

Примечание Wunder Fund: мы very early adopters Ноушена и большие его фанаты. Поэтому решили перевести нетипичную для нас статью о том, как он создавался, как рос, как развивалась его стратегия. В статье есть ряд интересных мыслей про развитие продуктов.

Сегодня публикуем вторую часть перевода материала о стратегиях роста платформы Notion.

→ Головокружительная первая часть

Читать далее
Всего голосов 22: ↑20 и ↓2 +18
Комментарии 0

Стратегии роста Notion. Часть 1

Время на прочтение 19 мин
Количество просмотров 5.5K
Блог компании Wunder Fund Программирование *Управление разработкой *Бизнес-модели *
Перевод

Примечание Wunder Fund: мы very early adopters Ноушена и большие его фанаты. Поэтому решили перевести нетипичную для нас статью о том, как он создавался, как рос, как развивалась его стратегия. В статье есть ряд интересных мыслей про развитие продуктов.

Что можно узнать о стратегиях роста бизнеса, в основе которых лежит продукт и формируемое вокруг него сообщество пользователей, проанализировав SaaS-стартап стоимостью 10 миллиардов долларов?

Читать далее
Всего голосов 17: ↑16 и ↓1 +15
Комментарии 4

Информация

Сайт
wunderfund.io
Дата регистрации
Дата основания
Численность
11–30 человек
Местоположение
Россия
Представитель
xopxe