company_banner

Проблемы при работе с кэшем и способы их решения

    Привет, Хабр!

    Меня зовут Виктор Пряжников, я работаю в SRV-команде Badoo. Наша команда занимается разработкой и поддержкой внутреннего API для наших клиентов со стороны сервера, и кэширование данных — это то, с чем мы сталкиваемся каждый день.

    Существует мнение, что в программировании есть только две по-настоящему сложные задачи: придумывание названий и инвалидация кэша. Я не буду спорить с тем, что инвалидация — это сложно, но мне кажется, что кэширование — довольно хитрая вещь даже без учёта инвалидации. Есть много вещей, о которых следует подумать, прежде чем начинать использовать кэш. В этой статье я попробую сформулировать некоторые проблемы, с которыми можно столкнуться при работе с кэшем в большой системе.



    Я расскажу о проблемах разделения кэшируемых данных между серверами, параллельных обновлениях данных, «холодном старте» и работе системы со сбоями. Также я опишу возможные способы решения этих проблем и приведу ссылки на материалы, где эти темы освещены более подробно. Я не буду рассказывать, что такое кэш в принципе и касаться деталей реализации конкретных систем.

    При работе я исхожу из того, что рассматриваемая система состоит из приложения, базы данных и кэша для данных. Вместо базы данных может использоваться любой другой источник (например, какой-то микросервис или внешний API).

    Деление данных между кэширующими серверами


    Если вы хотите использовать кэширование в достаточно большой системе, нужно позаботиться о том, чтобы можно было поделить кэшируемые данные между доступными серверами. Это необходимо по нескольким причинам:

    • данных может быть очень много, и они физически не поместятся в память одного сервера;
    • данные могут запрашиваться очень часто, и один сервер не в состоянии обработать все эти запросы;
    • вы хотите сделать кэширование более надёжным. Если у вас только один кэширующий сервер, то при его падении вся система останется без кэша, что может резко увеличить нагрузку на базу данных.

    Самый очевидный способ разбивки данных — вычисление номера сервера псевдослучайным образом в зависимости от ключа кэширования.

    Есть разные алгоритмы для реализации этого. Самый простой — вычисление номера сервера как остатка от целочисленного деления численного представления ключа (например, CRC32) на количество кэширующих серверов:

    $cache_server_index = crc32($cache_key) % count($cache_servers_list);

    Такой алгоритм называется хешированием по модулю (англ. modulo hashing). CRC32 здесь использован в качестве примера. Вместо него можно взять любую другую хеширующую функцию, из результатов которой можно получить число, большее или равное количеству серверов, с более-менее равномерно распределённым результатом.

    Этот способ легко понять и реализовать, он достаточно равномерно распределяет данные между серверами, но у него есть серьёзный недостаток: при изменении количества серверов (из-за технических проблем или при добавлении новых) значительная часть кэша теряется, поскольку для ключей меняется остаток от деления.

    Я написал небольшой скрипт, который продемонстрирует эту проблему.

    В нём генерируется 1 млн уникальных ключей, распределённых по пяти серверам с помощью хеширования по модулю и CRC32. Я эмулирую выход из строя одного из серверов и перераспределение данных по четырём оставшимся.

    В результате этого «сбоя» примерно 80% ключей изменят своё местоположение, то есть окажутся недоступными для последующего чтения:

    Total keys count: 1000000
    Shards count range: 4, 5

    ShardsBefore ShardsAfter LostKeysPercent LostKeys
    5 4 80.03% 800345

    Самое неприятное тут то, что 80% — это далеко не предел. С увеличением количества серверов процент потери кэша будет расти и дальше. Единственное исключение — это кратные изменения (с двух до четырёх, с девяти до трёх и т. п.), при которых потери будут меньше обычного, но в любом случае не менее половины от имеющегося кэша:


    Я выложил на GitHub скрипт, с помощью которого я собрал данные, а также ipynb-файл, рисующий данную таблицу, и файлы с данными.

    Для решения этой проблемы есть другой алгоритм разбивки — согласованное хеширование (англ. consistent hashing). Основная идея этого механизма очень простая: здесь добавляется дополнительное отображение ключей на слоты, количество которых заметно превышает количество серверов (их могут быть тысячи и даже больше). Сами слоты, в свою очередь, каким-то образом распределяются по серверам.

    При изменении количества серверов количество слотов не меняется, но меняется распределение слотов между этими серверами:

    • если один из серверов выходит из строя, то все слоты, которые к нему относились, распределяются между оставшимися;
    • если добавляется новый сервер, то ему передаётся часть слотов от уже имеющихся серверов.

    Обычно идею согласованного хеширования визуализируют с помощью колец, точки на окружностях которых показывают слоты или границы диапазонов слотов (в случае если этих слотов очень много). Вот простой пример перераспределения для ситуации с небольшим количеством слотов (60), которые изначально распределены по четырём серверам:



    На картинке начального разбиения все слоты одного сервера расположены подряд, но в реальности это не обязательное условие — они могут быть расположены как угодно.

    Основное преимущество этого способа перед предыдущим заключается в том, что здесь каждому серверу соответствует не одно значение, а целый диапазон, и при изменении количества серверов между ними перераспределяется гораздо меньшая часть ключей (k / N, где k — общее количество ключей, а N — количество серверов).

    Если вернуться к сценарию, который я использовал для демонстрации недостатка хеширования по модулю, то при той же ситуации с падением одного из пяти серверов (с одинаковым весом) и перераспределением ключей с него между оставшимися мы потерям не 80% кэша, а только 20%. Если считать, что изначально все данные находятся в кэше и все они будут запрошены, то эта разница означает, что при согласованном хешировании мы получим в четыре раза меньше запросов к базе данных.

    Код, реализующий этот алгоритм, будет сложнее, чем код предыдущего, поэтому я не буду его приводить в статье. При желании его легко можно найти — на GitHub есть масса реализаций на самых разных языках.

    Наряду с согласованным хешированием есть и другие способы решения этой проблемы (например, rendezvous hashing), но они гораздо менее распространены.

    Вне зависимости от выбранного алгоритма выбор сервера на основе хеша ключа может работать плохо. Обычно в кэше находится не набор однотипных данных, а большое количество разнородных: кэшированные значения занимают разное место в памяти, запрашиваются с разной частотой, имеют разное время генерации, разную частоту обновлений и разное время жизни. При использовании хеширования вы не можете управлять тем, куда именно попадёт ключ, и в результате может получиться «перекос» как в объёме хранимых данных, так и в количестве запросов к ним, из-за чего поведение разных кэширующих серверов будет сильно различаться.

    Чтобы решить эту проблему, необходимо «размазать» ключи так, чтобы разнородные данные были распределены между серверами более-менее однородно. Для этого для выбора сервера нужно использовать не ключ, а какой-то другой параметр, к которому нужно будет применить один из описанных подходов. Нельзя сказать, что это будет за параметр, поскольку это зависит от вашей модели данных.

    В нашем случае почти все кэшируемые данные относятся к одному пользователю, поэтому мы используем User ID в качестве параметра шардирования данных в кэше. Благодаря этому у нас получается распределить данные более-менее равномерно. Кроме того, мы получаем бонус — возможность использования multi_get для загрузки сразу нескольких разных ключей с информацией о юзере (что мы используем в предзагрузке часто используемых данных для текущего пользователя). Если бы положение каждого ключа определялось динамически, то невозможно было бы использовать multi_get при таком сценарии, так как не было бы гарантии, что все запрашиваемые ключи относятся к одному серверу.

    См. также:


    Параллельные запросы на обновление данных


    Посмотрите на такой простой кусочек кода:

    public function getContactsCountCached(int $user_id) : ?int
    {
       $contacts_count = \Contacts\Cache::getContactsCount($user_id);
       if ($contacts_count !== false) {
           return $contacts_count;
       }
    
       $contacts_count = $this->getContactsCount($user_id);
       if (is_null($contacts_count)) {
           return null;
       }
    
       \Contacts\Cache::setContactsCount($user_id, $contacts_count);
       return $contacts_count;
    }
    

    Что произойдёт при отсутствии запрашиваемых данных в кэше? Судя по коду, должен запуститься механизм, который достанет эти данные. Если код выполняется только в один поток, то всё будет хорошо: данные будут загружены, помещены в кэш и при следующем запросе взяты уже оттуда. А вот при работе в несколько параллельных потоков всё будет иначе: загрузка данных будет происходить не один раз, а несколько.

    Выглядеть это будет примерно так:



    На момент начала обработки запроса в процессе №2 данных в кэше ещё нет, но они уже читаются из базы данных в процессе №1. В этом примере проблема не такая существенная, ведь запроса всего два, но их может быть гораздо больше.

    Количество параллельных загрузок зависит от количества параллельных пользователей и времени, которое требуется на загрузку необходимых данных.

    Предположим, у вас есть какой-то функционал, использующий кэш с нагрузкой 200 запросов в секунду. Если на на загрузку данных нужно 50 мс, то за это время вы получите 50 / (1000 / 200) = 10 запросов.

    То есть при отсутствии кэша один процесс начнёт загружать данные, и за время загрузки придут ещё девять запросов, которые не увидят данные в кэше и тоже станут их загружать.

    Эта проблема называется cache stampede (русского аналога этого термина я не нашёл, дословно это можно перевести как «паническое бегство кэша», и картинка в начале статьи показывает пример этого действия в дикой природе), hit miss storm («шторм непопаданий в кэш») или dog-pile effect («эффект собачьей стаи»). Есть несколько способов её решения:

    Блокировка перед началом выполнения операции пересчёта/ загрузки данных


    Суть этого метода состоит в том, что при отсутствии данных в кэше процесс, который хочет их загрузить, должен захватить лок, который не даст сделать то же самое другим параллельно выполняющимся процессам. В случае memcached простейший способ блокировки — добавление ключа в тот же кэширующий сервер, в котором должны храниться сами закэшированные данные.

    При этом варианте данные обновляются только в одном процессе, но нужно решить, что делать с процессами, которые попали в ситуацию с отсутствующим кэшем, но не смогли получить блокировку. Они могут отдавать ошибку или какое-то значение по умолчанию, ждать какое-то время, после чего пытаться получить данные ещё раз.

    Кроме того, нужно тщательно выбирать время самой блокировки — его гарантированно должно хватить на то, чтобы загрузить данные из источника и положить в кэш. Если не хватит, то повторную загрузку данных может начать другой параллельный процесс. С другой стороны, если этот временной промежуток будет слишком большим и процесс, получивший блокировку, умрёт, не записав данные в кэш и не освободив блокировку, то другие процессы также не смогут получить эти данные до окончания времени блокировки.

    Вынос обновлений в фон


    Основная идея этого способа — разделение по разным процессам чтения данных из кэша и записи в него. В онлайн-процессах происходит только чтение данных из кэша, но не их загрузка, которая идёт только в отдельном фоновом процессе. Данный вариант делает невозможными параллельные обновления данных.

    Этот способ требует дополнительных «расходов» на создание и мониторинг отдельного скрипта, пишущего данные в кэш, и синхронизации времени жизни записанного кэша и времени следующего запуска обновляющего его скрипта.

    Этот вариант мы в Badoo используем, например, для счётчика общего количества пользователей, про который ещё пойдёт речь дальше.

    Вероятностные методы обновления


    Суть этих методов заключается в том, что данные в кэше обновляются не только при отсутствии, но и с какой-то вероятностью при их наличии. Это позволит обновлять их до того, как закэшированные данные «протухнут» и потребуются сразу всем процессам.

    Для корректной работы такого механизма нужно, чтобы в начале срока жизни закэшированных данных вероятность пересчёта была небольшой, но постепенно увеличивалась. Добиться этого можно с помощью алгоритма XFetch, который использует экспоненциальное распределение. Его реализация выглядит примерно так:

    function xFetch($key, $ttl, $beta = 1)
    {
        [$value, $delta, $expiry] = cacheRead($key);
        if (!$value || (time() − $delta * $beta * log(rand())) > $expiry) {
            $start  = time();
            $value  = recomputeValue($key);
            $delta  = time() – $start;
            $expiry = time() + $ttl;
            cacheWrite(key, [$value, $delta, $expiry], $ttl);
        }
    
        return $value;
    }
    

    В данном примере $ttl — это время жизни значения в кэше, $delta — время, которое потребовалось для генерации кэшируемого значения, $expiry — время, до которого значение в кэше будет валидным, $beta — параметр настройки алгоритма, изменяя который, можно влиять на вероятность пересчёта (чем он больше, тем более вероятен пересчёт при каждом запросе). Подробное описание этого алгоритма можно прочитать в white paper «Optimal Probabilistic Cache Stampede Prevention», ссылку на который вы найдёте в конце этого раздела.

    Нужно понимать, что при использовании подобных вероятностных механизмов вы не исключаете параллельные обновления, а только снижаете их вероятность. Чтобы исключить их, можно «скрестить» несколько способов сразу (например, добавив блокировку перед обновлением).

    См. также:


    «Холодный» старт и «прогревание» кэша


    Нужно отметить, что проблема массового обновления данных из-за их отсутствия в кэше может быть вызвана не только большим количеством обновлений одного и того же ключа, но и большим количеством одновременных обновлений разных ключей. Например, такое может произойти, когда вы выкатываете новый «популярный» функционал с применением кэширования и фиксированным сроком жизни кэша.

    В этом случае сразу после выкатки данные начнут загружаться (первое проявление проблемы), после чего попадут в кэш — и какое-то время всё будет хорошо, а после истечения срока жизни кэша все данные снова начнут загружаться и создавать повышенную нагрузку на базу данных.

    От такой проблемы нельзя полностью избавиться, но можно «размазать» загрузки данных по времени, исключив тем самым резкое количество параллельных запросов к базе. Добиться этого можно несколькими способами:

    • плавным включением нового функционала. Для этого необходим механизм, который позволит это сделать. Простейший вариант реализации — выкатывать новый функционал включённым на небольшую часть пользователей и постепенно её увеличивать. При таком сценарии не должно быть сразу большого вала обновлений, так как сначала функционал будет доступен только части пользователей, а по мере её увеличения кэш уже будет «прогрет».
    • разным временем жизни разных элементов набора данных. Данный механизм можно использовать, только если система в состоянии выдержать пик, который наступит при выкатке всего функционала. Его особенность заключается в том, что при записи данных в кэш у каждого элемента будет своё время жизни, и благодаря этому вал обновлений сгладится гораздо быстрее за счёт распределения последующих обновления во времени. Простейший способ реализовать такой механизм — умножить время жизни кэша на какой-то случайный множитель:

    public function getNewSnapshotTTL()
    {
        $random_factor = rand(950, 1050) / 1000;
        return intval($this->getSnapshotTTL() * $random_factor);
    }
    

    Если по какой-то причине не хочется использовать случайное число, можно заменить его псевдослучайным значением, полученным с помощью хеш-функции на базе каких-нибудь данных (например, User ID).

    Пример


    Я написал небольшой скрипт, который эмулирует ситуацию «непрогретого» кэша.
    В нём я воспроизвожу ситуацию, при которой пользователь при запросе загружает данные о себе (если их нет в кэше). Конечно, пример синтетический, но даже на нём можно увидеть разницу в поведении системы.

    Вот как выглядит график количества hit miss-ов в ситуации с фиксированным (fixed_cache_misses_count) и различным (random_cache_misses_count) сроками жизни кэша:



    Видно, что в начале работы в обоих случаях пики нагрузки очень заметны, но при использовании псевдослучайного времени жизни они сглаживаются гораздо быстрее.

    «Горячие» ключи


    Данные в кэше разнородные, некоторые из них могут запрашиваться очень часто. В этом случае проблемы могут создавать даже не параллельные обновления, а само количество чтений. Примером подобного ключа у нас является счётчик общего количества пользователей:



    Этот счётчик — один из самых популярных ключей, и при использовании обычного подхода все запросы к нему будут идти на один сервер (поскольку это всего один ключ, а не множество однотипных), поведение которого может измениться и замедлить работу с другими ключами, хранящимися там же.



    Чтобы решить эту проблему, нужно писать данные не в один кэширующий сервер, а сразу в несколько. В этом случае мы кратно снизим количество чтений этого ключа, но усложним его обновления и код выбора сервера — ведь нам нужно будет использовать отдельный механизм.

    Мы в Badoo решаем эту проблему тем, что пишем данные во все кэширующие серверы сразу. Благодаря этому при чтении мы можем использовать общий механизм выбора сервера — в коде можно использовать обычный механизм шардирования по User ID, и при чтении не нужно ничего знать про специфику этого «горячего» ключа. В нашем случае это работает, поскольку у нас сравнительно немного серверов (примерно десять на площадку).

    Если бы кэширующих серверов было намного больше, то этот способ мог бы быть не самым удобным — просто нет смысла дублировать сотни раз одни и те же данные. В таком случае можно было бы дублировать ключ не на все серверы, а только на их часть, но такой вариант требует чуть больше усилий.

    Если вы используете определение сервера по ключу кэша, то можно добавить к нему ограниченное количество псевдослучайных значений (сделав из total_users_count что-то вроде total_users_count_1, total_users_count_2 и т. д.). Подобный подход используется, например, в Etsy.

    Если вы используете явные указания параметра шардирования, то просто передавайте туда разные псевдослучайные значения.

    Главная проблема с обоими способами — убедиться, что разные значения действительно попадают на разные кэширующие серверы.

    См. также:


    Сбои в работе


    Система не может быть надёжной на 100%, поэтому нужно предусмотреть, как она будет вести себя при сбоях. Сбои могут быть как в работе самого кэша, так и в работе базы данных.

    Про сбои в работе кэша я уже рассказывал в предыдущих разделах. Единственное, что можно добавить, — хорошо было бы предусмотреть возможность отключения части функционала на работающей системе. Это полезно, когда система не в состоянии справиться с пиком нагрузки.

    При сбоях в работе базы данных и отсутствии кэша мы можем попасть в ситуацию cache stampede, про которую я тоже уже рассказывал раньше. Выйти из неё можно уже описанными способами, а можно записать в кэш заведомо некорректное значение с небольшим сроком жизни. В этом случае система сможет определить, что источник недоступен, и на какое-то время перестанет пытаться запрашивать данные.

    Заключение


    В статье я затронул основные проблемы при работе с кэшем, но уверен, что, кроме них, есть множество других, и продолжать этот разговор можно очень долго. Надеюсь, что после прочтения моей статьи ваш кэш станет более эффективным.
    Badoo
    Big Dating

    Похожие публикации

    Комментарии 22

      0
      А какова логика перераспределения слотов? Отвалился один сервер — его слоты перераспределили между оставшимися. Потом сервер вернулся — какие слоты ему отдали? Те же что и забрали или произвольные? А если вернулся не один сервер, а два? Там какая-то сложная логика или точно так же вычисляем от ключа, но на этот раз не кэша а слота?
        +1

        Не так важно, какие именно слоты переносятся между серверами, главное добиться правильного соотношения между количеством слотов у работающих серверов (если веса равные, то и количество слотов на каждом должно быть примерно равно друг другу).


        Если сервер отвалился, то его слоты должны делиться поровну между оставшимися. Если появился один или несколько новых, то нужно взять с каждого из старых по равному числу слотов, но так, чтобы количество слотов после перераспределения было примерно равно.


        Если веса у серверов различны, то отношение количества слотов на этих серверах должно примерно соответствовать соотношению их весов.

        +1
        Проблема cache stampede (hit miss storm) также называется dog-pile effect и вариант решения описывался здесь habrahabr.ru/post/43540
          +1

          Спасибо за замечание, добавил еще один вариант названия

          –1
          Посмотрите на такой простой кусочек кода:

          Если это продакшен-код (или создан из такового), тогда он очень, очень плох… И дело не в неправильной работе с кешом, а в самом коде. Да даже и пример можно было сделать, используя нормальные практики программирования, заодно выиграв в читаемости.

            0
            Этот код приведен как раз для того, чтобы продемонстрировать определенную проблему, о чем сказано ниже. Как он может быть боевым? ;)
              –2

              Прочитайте, пожалуйста, мой коммент внимательнее. Сам код, а не что он делает, плох.

                +2

                А можете привести пример как бы вы его написали читабельнее, используя нормальные практики программирования ?

            0
            Ошибся веткой… :(
              +2
              Мы в Badoo решаем эту проблему тем, что пишем данные во все кэширующие серверы сразу. Благодаря этому при чтении мы можем использовать общий механизм выбора сервера — в коде можно использовать обычный механизм шардирования по User ID, и при чтении не нужно ничего знать про специфику этого «горячего» ключа. В нашем случае это работает, поскольку у нас сравнительно немного серверов (примерно десять на площадку).

              Если бы кэширующих серверов было намного больше, то этот способ мог бы быть не самым удобным — просто нет смысла дублировать сотни раз одни и те же данные. В таком случае можно было бы дублировать ключ не на все серверы, а только на их часть, но такой вариант требует чуть больше усилий.


              А вы полностью сами написали распределенный кэш? Почему индустриальный лидеры: hazelcast и ignite — не подошли? Там и шардирование есть, и репликация.

              Записывать кэш на все 10 серверов — это, кажется, супер дорого, поправьте меня, пожалуйста. Особенно, если вы ждёте Аков от всех нод, а не какого-то кворума.
                +1

                Да, писать в 10 кэширующих серверов долго и дорого, но мы используем это крайне редко. Обычно мы пишем ключ и читаем его только из одного сервера.


                Я нашёл меньше 20 групп ключей, использующих схему со всеми серверами. Обычно это какие-то счётчики или кэши конфигурации по странам/городам, которые обновляются только фоновыми скриптами (т.е. мы исключаем параллельные обновления). В онлайне эти ключи только читаются и не отличаются от остальных.


                Честно говоря, я не знаю, рассматривались ли решения, про которые вы говорите, но кажется, что проблема не такая большая, чтобы использовать для неё специализированное решение. Memcached у нас уже был, так что мы использовали его.

                0
                Вынос обновлений в фон

                А если проекты маленькие, но проблема с параллельными вычислениями все же присутствует? Выносить в фон выглядит немного дороговато- переписывать чужой код, кто-то должен
                поддерживать, помнить про это, убедить остальную команду, клиента…
                Тоже есть небольшой опыт с метками (boolean), метками времени, но если что перегружается, то все остается в «воздухе». Что если на момент вычисления блокировать какой-нибудь файл? Если основной процесс с вычислениями помрет, то файл будет автоматом разблокирован(?) и другой процесс в очереди сможет подхватить работу, при этом основной процесс может записывать какие-то промежуточные вычисления в этот файл, что позволит следующему начать уже не с нуля. Это конечно все нагрузка на диск, но опять же это не для крупных проектов.
                Дальше можно нарастить более сложную логику: если на «холодный старт» много что нужно вычислить, то может не ставить в очередь другие процессы, а дать им что «повычислять»? Т.е. по кол-ву «вычислений» появятся что-то вроде «мастер» процессов, а остальные останутся в очереди, когда «мастер» процесс завершает свой кусочек вычислений для кэша он становится в очередь к остальным, как-то только все «мастер» процессы выполнят свои задачи, то все процессы отдадут ответы из кэша. -Пока лишь фантазии…
                  +1

                  Честно говоря, вариант с мастер-процессом не выглядит проще в реализации, чем фоновое обновление (хотя сложно "лечить по фотографии").


                  Если у вас есть много вычислений, которые можно разбить на отдельные части, то их можно обновлять по частям, используя для каждой части вероятностные обновления до истечения времени жизни основного кэша. В этом случае можно и избежать фонового процесса и иметь часть готовых результатов на момент "протухания" кэша итогового результата.

                    +2
                    Я себе такой велосипед изобретал против параллельного обновления кэша: обернул методы set/get кэша, добавил внутри сеттера в сам кэш данные о ttl и датах создания-протухания, а потом в геттере проверял, сколько кэш уже живёт в момент обращения к нему. Если прожил 90% от своего срока, то продлевал ему время жизни ещё немного, но наружу всё равно возвращал false. В итоге код, запрашивающий данные, получал false и шёл обновлять их думая что их нет, но все прочие клиенты получали старые данные следующие пару секунд.
                      0
                      Отличная идея! Но есть вопрос.
                      Что будет, если бд по какой то причине не сможет обновлять кеш некоторое время? Ведь в этом случае практически все клиенты вместо null будут получать «протухшие» значения, до тех пор пока не возобновится обновление. Возможно это допустимое поведение, но его нужно учитывать.
                      0

                      По описанию это очень похоже на вероятностные методы, только вместо случайного числа тут тут время обращения

                        –1

                        Есть ли готовая библиотека для PHP, которая реализует кэш, инкапсулирует решение проблем, описанных в статье (cache stampede и обработка сбоев при обновлении кэша), и подходит хотя бы для небольших проектов?

                          +1

                          Я такой не видел.


                          Достаточно просто найти реализацию согласованного хеширования (оно есть, например, в расширении memcached), а вот всё остальное в виде отдельной библиотеки мне не попадалось...

                          0
                          Блокировка перед началом выполнения операции пересчёта/ загрузки данных
                          function getContactsCountCached1(int $user_id) : ?int
                          	{
                          		$contacts_count = \Contacts\Cache::getContactsCount($user_id);
                          		if ($contacts_count !== false) {
                          			 return $contacts_count;
                          		}
                          		
                          		if ($lock->get() === true) {
                          			while($lock->get() === true){
                          				sleep(DB_TIME_OUT / 10); //wait n/10 sec
                          			}
                          			return getContactsCountCached($user_id);
                          		}
                          		
                          		$lock->lock(DB_TIMEOUT); // set on n sec
                          		$contacts_count = $this->getContactsCount($user_id, DB_TIMEOUT);
                          		$lock->unlock();
                          		if (is_null($contacts_count)) {
                          			 return null;
                          		}
                          
                          		\Contacts\Cache::setContactsCount($user_id, $contacts_count);
                          		return $contacts_count;
                          	}

                            0
                            Спасибо за отличную статью! Мотивирует!
                            Было бы здорово, если бы вы прогнали тест с XFetch и дали бы возможность сравнить с остальными.
                            0
                            Не судите строго за мой вопрос — я наткнулся на согласованное хеширование при изучении L4 балансировщиков. Правильно ли я понимаю, что данный алгоритм хеширования используется при большом количестве балансировщик, которые могут быть увечеличены горизонтально. В таком случае слоты — это балансировщики в данном алгоритме, правильно ли я понимаю? Если у нас есть 10 балансировщиков, каждый из них независимо друг на друга будет считать хеш для тех пакетов, которые на него пришли (LB на схеме)?
                            image

                            Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

                            Самое читаемое