Как стать автором
Обновить
898.65
OTUS
Цифровые навыки от ведущих экспертов

Как построить систему распознавания лиц с помощью Elasticsearch и Python

Время на прочтение5 мин
Количество просмотров7.5K
Автор оригинала: Yacine Younes

Перевод материала подготовлен в рамках практического интенсива «Централизованные системы логирования Elastic stack».


Пытались ли вы когда-нибудь искать объекты на изображениях? Elasticsearch может помочь вам хранить, анализировать и искать объекты на изображениях или видео.

В этом кратком руководстве мы покажем вам, как создать систему распознавания лиц с помощью Python. Узнайте больше о том, как обнаруживать и кодировать информацию о внешности - и находить совпадения в поиске.

Краткое описание основ

Вам нужно освежить информацию? Давайте вкратце рассмотрим несколько основных понятий.

Распознавание лиц

Распознавание лиц - это процесс идентификации человека по его лицу, например, для реализации механизма аутентификации (как разблокировка смартфона). Он фиксирует, анализирует и сравнивает паттерны, основанные на деталях лица человека. Этот процесс можно разделить на три этапа: 

  • Обнаружение лица: Идентификация человеческих лиц на цифровых изображениях.

  • Кодирование данных о лице: Преобразование черт лица в цифровое представление

  • Сопоставление лиц: Поиск и сравнение черт лица

Мы рассмотрим каждый этап на нашем примере.

128-мерный вектор

Черты лица могут быть преобразованы в набор цифровой информации для хранения и анализа.

Векторный тип данных

Elasticsearch предлагает тип данных dense_vector для хранения “плотных” векторов плавающих значений. Максимальное количество элементов в векторе не должно превышать 2048, что вполне достаточно для хранения репрезентаций черт лица.

Теперь давайте реализуем все эти концепции.

Все, что вам нужно

Для обнаружения лиц и кодирования информации вам понадобится следующее:

Обратите внимание, что мы протестировали следующие инструкции на Ubuntu 20.04 LTS и Ubuntu 18.04 LTS. В зависимости от вашей операционной системы могут потребоваться некоторые изменения.

Установите Python и библиотеки Python

Ubuntu 20 и другие версии Debian Linux поставляются с установленным Python 3. Если у вас не такой пакет, загрузите и установите Python по этой ссылке

Чтобы убедиться, что ваша версия является самой свежей, вы можете выполнить следующую команду: 

sudo apt update 
sudo apt upgrade

Убедитесь, что версия Python - 3.x:

python3 -V

Установите pip3 для управления библиотеками Python:

sudo apt install -y python3-pip

Установите cmake, необходимый для работы библиотеки face_recognition:

pip3 install CMake

Добавьте папку cmake bin в каталог $PATH:

export PATH=$CMake_bin_folder:$PATH

В завершение установите следующие библиотеки, прежде чем приступить к написанию сценария нашей основной программы:

pip3 install dlib 
pip3 install numpy 
pip3 install face_recognition  
pip3 install elasticsearch

Обнаружение и кодирование информации о лице из изображения

Используя библиотеку face_recognition, мы можем обнаружить лица на изображении и преобразовать черты лица в 128-мерный вектор.

Создайте файл getVectorFromPicture.py:

touch getVectorFromPicture.py

Дополните файл следующим сценарием:

import face_recognition 
import numpy as np 
import sys 
image = face_recognition.load_image_file("$PATH_TO_IMAGE") 
# detect the faces from the images  
face_locations = face_recognition.face_locations(image) 
# encode the 128-dimension face encoding for each face in the image 
face_encodings = face_recognition.face_encodings(image, face_locations) 
# Display the 128-dimension for each face detected 
for face_encoding in face_encodings: 
      print("Face found ==>  ", face_encoding.tolist())

Давайте выполним getVectorFromPicture.py, чтобы получить репрезентацию черт лица для изображений основателей компании Elastic. В сценарии необходимо изменить переменную $PATH_TO_IMAGE, чтобы задать имя файла изображения.

Теперь мы можем сохранить представление черт лица в Elasticsearch.

Сначала создадим индекс с отображением, содержащим поле с типом dense_vector:

# Store the face 128-dimension in Elasticsearch 
## Create the mapping 
curl -XPUT "http://localhost:9200/faces" -H 'Content-Type: application/json' -d' 
{ 
  "mappings" : { 
      "properties" : { 
        "face_name" : { 
          "type" : "keyword" 
        }, 
        "face_encoding" : { 
          "type" : "dense_vector", 
          "dims" : 128 
        } 
      } 
    } 
}'

Нам необходимо создать один документ для каждой репрезентации лица, это можно сделать с помощью Index API:

## Index the face feature representation
curl -XPOST "http://localhost:9200/faces/_doc" -H 'Content-Type: application/json' -d'
{
  "face_name": "name",
  "face_encoding": [
     -0.14664565,
     0.07806452,
     0.03944433,
     ...
     ...
     ...
     -0.03167224,
     -0.13942884
  ]
}'

Сопоставление лиц

Допустим, мы проиндексировали четыре документа в Elasticsearch, которые содержат отдельные изображения лиц основателей Elastic. Теперь мы можем использовать другое изображение наших основателей для сопоставления отдельных изображений.

Создайте файл recognizeFaces.py

touch recognizeFaces.py

В этом сценарии мы извлечем векторы для каждого лица, обнаруженного на входном изображении, и используем эти векторы при создании запроса для отправки в Elasticsearch:

Импортируйте библиотеки:

import face_recognition 
import numpy as np 
from elasticsearch import Elasticsearch 
import sys

Добавьте следующий раздел для подключения к Elasticsearch:

# Connect to Elasticsearch cluster 
from elasticsearch import Elasticsearch 
es = Elasticsearch( 
cloud_id="cluster-1:dXMa5Fx...", 
     http_auth=("elastic", "<password>"), 
)

Мы будем использовать функцию cosineSimilarity для вычисления степени косинусного сходства между заданными векторами запросов и векторами документов, хранящихся в Elasticsearch.

i=0 
for face_encoding in face_encodings: 
        i += 1 
        print("Face",i) 
        response = es.search( 
        index="faces", 
        body={ 
         "size": 1, 
         "_source": "face_name", 
        "query": { 
        "script_score": { 
                 "query" : { 
                     "match_all": {} 
                 }, 
         "script": { 
                "source": "cosineSimilarity(params.query_vector, 'face_encoding')", 
                 "params": { 
                 "query_vector":face_encoding.tolist() 
                } 
           } 
          } 
         } 
        } 
        )

Предположим, что значение меньше 0,93 считается неизвестным лицом:

for hit in response['hits']['hits']: 
                #double score=float(hit['_score']) 
                if (float(hit['_score']) > 0.93): 
                    print("==> This face  match with ", hit['_source']['face_name'], ",the score is" ,hit['_score']) 
                else: 
                        print("==> Unknown face")

Давайте выполним наш скрипт:

Скрипт смог обнаружить все лица с совпадением результатов более 0,93.

Сделайте еще один шаг вперед с расширенным поиском

Распознавание лиц и поиск можно объединить для расширенных сценариев использования. Вы можете использовать Elasticsearch для создания более сложных запросов, таких как geo-queries, query-dsl-bool-query и search-aggregations.

Например, следующий запрос применяет поиск cosineSimilarity к определенному местоположению в радиусе 200 км:

GET /_search 
{ 
  "query": { 
    "script_score": { 
      "query": { 
    "bool": { 
      "must": { 
        "match_all": {} 
      }, 
      "filter": { 
        "geo_distance": { 
          "distance": "200km", 
          "pin.location": { 
            "lat": 40, 
            "lon": -70 
          } 
        } 
      } 
    } 
  }, 
       "script": { 
                "source": "cosineSimilarity(params.query_vector, 'face_encoding')", 
                 "params": { 
                 "query_vector":[ 
                        -0.14664565,
                       0.07806452,
                       0.03944433,
                       ...
                       ...
                       ...
                       -0.03167224,
                       -0.13942884
                    ] 
                } 
           } 
    } 
  } 
}

Комбинирование cosineSimilarity с другими запросами Elasticsearch дает вам неограниченные возможности для реализации более сложных сценариев использования.

Заключение

Распознавание лиц может быть полезно во многих случаях, и, возможно, вы уже используете его в своей повседневной жизни. Описанные выше концепции могут быть обобщены для любого обнаружения объектов на изображениях или видео, поэтому вы можете дополнить свой сценарий использования до очень широкого применения. 

Elasticsearch может помочь в решении сложных задач. Попробуйте это с помощью бесплатной 14-дневной пробной версии Elastic Cloud, нашего официального управляемого предложения Elasticsearch, и сообщите о своем мнении на наших форумах для обсуждения.


Узнать больше об экспресс-курсе «Централизованные системы логирования Elastic stack».

Теги:
Хабы:
Всего голосов 8: ↑6 и ↓2+4
Комментарии2

Публикации

Информация

Сайт
otus.ru
Дата регистрации
Дата основания
Численность
101–200 человек
Местоположение
Россия
Представитель
OTUS