Как стать автором
Обновить
41.63
Рейтинг
Recognitor
Computer Vision and Machine Learning
Сначала показывать
  • Новые
  • Лучшие

ComputerVision и стиль

Блог компании Recognitor Алгоритмы *Обработка изображений *Машинное обучение *Искусственный интеллект

Несколько месяцев назад я писал статью про тихую революцию в ComputerVision - про трансформеры. А сейчас я хочу поговорить про другую революцию в CV. Уже не такую тихую (статьи тут куда более известные). Рассказ будет про GAN'ы. Как ими сегодня умеют управлять, и что достигли. В первую очередь это StyleGan и его производные.
В последний год-полтора появилось много различных способов управлять GAN-сетями и улучшилось их качество. Ещё чуть чуть и… Что? Можно будет генерить фильмы по описанию? Игры? Нужно ли будет рисовать крутые текстуры, или их можно будет создать?Попробую показать куда дошла современная технология, и чего ожидать от GAN’ов.

Читать далее
Всего голосов 66: ↑66 и ↓0 +66
Просмотры 10K
Комментарии 13

Тихая революция и новый дикий запад в ComputerVision

Блог компании Recognitor Анализ и проектирование систем *Алгоритмы *Обработка изображений *Машинное обучение *

Казалось бы, революция с Computer Vision уже была. В 2012 году выстрелили алгоритмы основанные на сверточных нейронных сетях. Года с 2014 они дошли до продакшна, а года с 2016 заполонили все. Но, в конце 2020 года прошел новый виток. На этот раз не за 4 года, а за один. поговорим о Трансформерах в ComputerVision. В статье будет обзор новинок, которые появились в последний год.

Читать далее
Всего голосов 103: ↑103 и ↓0 +103
Просмотры 21K
Комментарии 22

Edge платы для домашнего Computer Vision

Блог компании Recognitor Обработка изображений *Машинное обучение *Компьютерное железо DIY или Сделай сам

Я люблю делать всякие странные штуки с Computer Vision. Назовем их “условно полезные девайсы”. Из того, что я выкладывал на Хабре, - рассказ про умную кормушку для птиц и камера для слежения за ребенком. По работе тоже примерно тем же самым занимаюсь. Так что люблю следить за актуальным рынком устройств которые подходят для ComputerVision. Свой прошлый обзор я делал полтора года назад. Что для Embedded - много. В этом я сосредоточусь на устройствах которые вышли недавно + на устройствах которые будут интересны для хоббийных проектов.

Читать далее
Всего голосов 38: ↑37 и ↓1 +36
Просмотры 8.1K
Комментарии 14

Как запихать нейронку в кофеварку

Блог компании Recognitor Анализ и проектирование систем *Машинное обучение *DevOps *Компьютерное железо
Tutorial
Мир машинного обучения продолжает стремительно развиваться. Всего за год технология может стать мейнстримом, и разительно измениться, придя в повседневность.

За прошедший год-полтора, одной из таких технологий, стали фреймворки выполнения моделей машинного обучения. Не то, что их не было. Но, за этот год, те которые были — стали сильно проще, удобнее, мощнее.



В статье я попробую осветить всё что повылезало за последнее время. Чтобы вы, решив использовать нейронную сеть в очередном калькуляторе, знали куда смотреть.
Всего голосов 31: ↑31 и ↓0 +31
Просмотры 14K
Комментарии 16

Одноглазый глубиномер

Блог компании Recognitor Работа с 3D-графикой *Обработка изображений *Машинное обучение *AR и VR

Недавно вышла интересная статья от FaceBook о том как можно делать неплохой 3D с монокулярных камер. Статья не очень применимая на практике. Но по качеству картинки завораживает.
Посмотрев на это я решил сделать небольшой рассказ о том что в статье творится, куда современные технологии пришли, и что можно ждать от них на практике.

Далее много картинок
Всего голосов 40: ↑40 и ↓0 +40
Просмотры 10K
Комментарии 11

RPi-няня

Блог компании Recognitor Обработка изображений *Машинное обучение *Искусственный интеллект DIY или Сделай сам
Периодически меня подмывает сделать что-то странное. Очевидно бесполезную вещь, которая не оправдывает себя по объему вложенных средств, и через полгода после создания пылиться на полке. Но зато полностью оправдывает себя по количеству эмоций, полученному опыту и новым рассказам. На Хабре даже есть две моих статьи про такие эксперименты: Алкоорган и умная кормушка для птиц.

Что ж. Пришло время рассказать о новом эксперименте. Как собрал, что из этого вышло и как повторить.



К новому проекту меня подтолкнуло событие, в каком-то смысле, банальное — родился сын. Я заранее устроил себе отпуск на месяц. Но ребёнок оказался тихим — было свободное время. И спящий рядом деть.

Дома много разных embedded-железок для computer vision. В итоге решил сделать видео-няню. Но не такую унылую, которыми завалены все магазины. А что-то поумнее и поинтереснее.
Читать дальше →
Всего голосов 42: ↑40 и ↓2 +38
Просмотры 11K
Комментарии 7

Роботы на карантине

Блог компании Recognitor Алгоритмы *Машинное обучение *Развитие стартапа Робототехника
Тут недавно мужики на Хабре рассказывали про Flipper и отладку на осциллографе по видеосвязи.

И это, конечно, победа вне конкурса! Но и у нас был интересный опыт отладки робота, находящегося в 2000 км от нас в лодочном гараже на норвежском побережье. Под катом рассказ о том, как мы делали зрение и правили “облачные мозги” роботам во время карантина удаленно:


Всего голосов 30: ↑30 и ↓0 +30
Просмотры 4.1K
Комментарии 4

Самая сложная задача в Computer Vision

Блог компании Recognitor Python *Обработка изображений *Машинное обучение *Искусственный интеллект
Tutorial
Среди всего многообразия задач Computer Vision есть одна, которая стоит особняком. К ней обычно стараются лишний раз не притрагиваться. И, если не дай бог работает, — не ворошить.
У неё нет общего решения. Практически для каждого применения существующие алгоритмы надо тюнинговать, переобучать, или судорожно копаться в куче матриц и дебрях логики.

Статья о том как делать трекинг. Где он используется, какие есть разновидности. Как сделать стабильное решение.
Всего голосов 127: ↑127 и ↓0 +127
Просмотры 42K
Комментарии 42

Как объяснить роботу свою точку зрения

Блог компании Recognitor Обработка изображений *Машинное обучение *Робототехника Искусственный интеллект
Когда-нибудь задумывались зачем сегодня нужны роботы? С детства мне казалось, что роботы стоят где-то на современных фабриках, что это где-то далеко от нас. Или в фантастике.
Но уже нет. Роботы на сегодня — это автоматизация любого рутинного процесса. Их могут ставить и на фермах, и в автомастерских.


Если раньше цена такой автоматизации была огромной, то сейчас она падает. Становятся доступны более сложные технологические манипуляции. Роборуки — это по сути такой универсальный манипулятор, который не нужно проектировать под каждую задачу, => снижение цены внедрения, ускорение внедрения (хотя роборука может быть дороже чем кусок конвейера, который делает аналогичную операцию).

Но роборука это лишь половина процесса. Вторая половина — научить роборуку думать. И тут до недавних пор ситуация была ужасная. Нет универсальных подходов, которые сможет настроить любой инженер. Надо нанимать программистов/разработчиков/математиков, чтобы они сформулировали проблему, попробовали сделать решение. Конечно, такая ситуация не могла существовать долго. Да и Computer Vision с глубоким обучением подвезли. Так что сейчас начинает появляться какая-то первичная автоматизация не только сторого повторяющихся процессов. Сегодня о ней и поговорим.
Всего голосов 16: ↑16 и ↓0 +16
Просмотры 3.6K
Комментарии 2

ML,VR & Robots (и немного облака)

Блог компании Recognitor Алгоритмы *Машинное обучение *Робототехника AR и VR
Всем привет!

Хочу рассказать об очень не скучном проекте, где пересеклись робототехника, Machine Learning (а вместе это уже Robot Learning), виртуальная реальность и немного облачных технологий. И все это на самом деле имеет смысл. Ведь это и правда удобно — вселяться в робота, показывать, что ему делать, а затем обучать веса на ML сервере по сохраненным данным.

Под катом мы расскажем, как оно сейчас работает, и немного деталей про каждый из аспектов, который пришлось разрабатывать.


Читать дальше →
Всего голосов 12: ↑11 и ↓1 +10
Просмотры 3.6K
Комментарии 2

Добавляем роботу глаза

Блог компании Recognitor Алгоритмы *Обработка изображений *Машинное обучение *Робототехника
Tutorial
Роботу иногда нужно что-то хватать. Вот и без глаз робот как без рук. В прямом смысле. Ведь не зная где лежит вкусняшка, робот не сможет дотянуться до ней своими роботизированными рукам. Или другими манипуляторами.

В данной статье мы разберемся, как откалибровать робота, чтобы иметь возможность переходить между Системой Координат робота и СК 3D-камеры.


Читать дальше →
Всего голосов 19: ↑19 и ↓0 +19
Просмотры 5.2K
Комментарии 11

Машинное зрение и медицина

Блог компании Recognitor Обработка изображений *Машинное обучение *Биотехнологии Искусственный интеллект
Прошло лет пять с того момента как нейронные сетки начали втыкать в каждую дырку. Есть масса примеров где всё работает почти идеально — биометрия, распознавание технической информации (номера, коды), классификация и поиск в массиве данных.

Есть области где всё хуже, но сейчас идёт большой прогресс — речь/распознавание текстов, переводы.



Но есть области загадочные. Вроде как и прогресс есть. И статьи регулярно выходят. Только вот до практического применения как-то особо и не доходит.

Давайте разберём то, как нейронные сеточки и машинное зрение работает в медицине.
Читать дальше →
Всего голосов 35: ↑35 и ↓0 +35
Просмотры 9.2K
Комментарии 24

Ультимативное сравнение embedded платформ для AI

Блог компании Recognitor Анализ и проектирование систем *Обработка изображений *Машинное обучение *Искусственный интеллект
Нейронные сеточки захватывают мир. Они считают посетителей, контролируют качество, ведут статистику и оценивают безопасность. Куча стартапов, использование в промышленности.
Замечательные фреймворки. Что PyTorch, что второй TensorFlow. Всё становиться удобнее и удобнее, проще и проще…
Но есть одна тёмная сторона. Про неё стараются молчать. Там нет ничего радостного, только тьма и отчаяние. Каждый раз когда видишь позитивную статью — грустно вздыхаешь, так как понимаешь что просто человек что-то не понял. Или скрыл.
Давайте поговорим про продакшн на embedded-устройствах.

Всего голосов 43: ↑43 и ↓0 +43
Просмотры 15K
Комментарии 54

Лопнул ли пузырь машинного обучения, или начало новой зари

Блог компании Recognitor Обработка изображений *Машинное обучение *Исследования и прогнозы в IT Искусственный интеллект
Недавно вышла статья, которая неплохо показывает тенденцию в машинном обучении последних лет. Если коротко: число стартапов в области машинного обучения в последние два года резко упало.

image

Ну что. Разберём «лопнул ли пузырь», «как дальше жить» и поговорим откуда вообще такая загогулина.
Всего голосов 185: ↑181 и ↓4 +177
Просмотры 108K
Комментарии 350

Краткий гайд по созданию оракулов, богов из машины и ошибкам второго рода

Блог компании Recognitor Алгоритмы *Обработка изображений *Машинное обучение *
Наверное, в этом тексте для многих не будет новизны. Наверное, другие скажут что такого не бывает в реальной жизни. Но, уже не первое апреля, а всё написанное тут — чистая правда, которая случалась со мной или с людьми вокруг. Возможно что-то из сказанного заставит вас переосмыслить окружающие вас феномены.

Если подходить к этим историям формально, то можно сказать что все они порождены тем что люди не учитывают ошибку второго рода. У Юдковского, с коим знакома четверть Хабра — эта ошибка обычно зовётся «Подтверждающее искажение».



Что это такое? В двух словах — «человек ищет подтверждение своей модели, а не её опровержение». Единственный шанс объяснить лучше, это примеры-примеры-примеры и опыт. Лишь так можно развить чувство что «что-то тут не так».

Мне кажется, что этот короткий рассказ позволит вам посмотреть на ошибки второго рода с совсем другой стороны. Со стороны того, как они уже вошли в нашу жизнь, влияют на практически каждое решение. И помогают нам делать богов из окружающих технологий. В машинном обучении я наталкиваюсь на это каждый день.
Читать дальше →
Всего голосов 73: ↑73 и ↓0 +73
Просмотры 20K
Комментарии 18

Правда и ложь систем распознавания лиц

Блог компании Recognitor Data Mining *Алгоритмы *Обработка изображений *Машинное обучение *
Пожалуй нет ни одной другой технологии сегодня, вокруг которой было бы столько мифов, лжи и некомпетентности. Врут журналисты, рассказывающие о технологии, врут политики которые говорят о успешном внедрении, врут большинство продавцов технологий. Каждый месяц я вижу последствия того как люди пробуют внедрить распознавание лиц в системы которые не смогут с ним работать.



Тема этой статьи давным-давно наболела, но было всё как-то лень её писать. Много текста, который я уже раз двадцать повторял разным людям. Но, прочитав очередную пачку треша всё же решил что пора. Буду давать ссылку на эту статью.

Итак. В статье я отвечу на несколько простых вопросов:

  • Можно ли распознать вас на улице? И насколько автоматически/достоверно?
  • Позавчера писали, что в Московском метро задерживают преступников, а вчера писали что в Лондоне не могут. А ещё в Китае распознают всех-всех на улице. А тут говорят, что 28 конгрессменов США преступники. Или вот, поймали вора.
  • Кто сейчас выпускает решения распознавания по лицам в чём разница решений, особенности технологий?

Большая часть ответов будет доказательной, с сылкой на исследования где показаны ключевые параметры алгоритмов + с математикой расчёта. Малая часть будет базироваться на опыте внедрения и эксплуатации различных биометрических систем.

Я не буду вдаваться в подробности того как сейчас реализовано распознавание лиц. На Хабре есть много хороших статей на эту тему: а, б, с (их сильно больше, конечно, это всплывающие в памяти). Но всё же некоторые моменты, которые влияют на разные решения — я буду описывать. Так что прочтение хотя бы одной из статей выше — упростит понимание этой статьи. Начнём!
Всего голосов 85: ↑84 и ↓1 +83
Просмотры 57K
Комментарии 79

Человек машине помощник

Блог компании Recognitor Data Mining *Машинное обучение *
Этот блог обычно посвящен распознаванию автомобильных номеров. Но, работая над этой задачей, мы пришли к интересному решению, которое можно с легкостью применять для очень широкого круга задач компьютерного зрения. Об этом сейчас и расскажем: как делать систему распознавания, которая вас не подведет. А если подведет, то ей можно подсказать, где ошибка, переобучить и иметь уже чуть более надежное решение, чем прежде. Добро пожаловать под кат!


Читать дальше →
Всего голосов 26: ↑26 и ↓0 +26
Просмотры 5.7K
Комментарии 3

Не сверточные сети

Блог компании Recognitor Машинное обучение *


Достоинства, проблемы и ограничения сверточных нейронных сетей (CNN) в настоящее время достаточно неплохо изучены. Прошло уже около 5 лет после признания их сообществом инженеров и первое впечатление «вот теперь решим все задачи», хочется верить, уже прошло. А значит, пришло время искать идеи, которые позволят сделать следующий шаг в области ИИ. Хинтон, например, предложил CapsuleNet.
Вместе с Алексеем Редозубовым, опираясь на его идеи об устройстве мозга, мы тоже решили отступить от мейнстрима. И сейчас у меня есть что показать: архитектуру (идёт заглавной картинкой для привлечения внимания) и исходники на Tensorflow для MNIST.

Более формально, результат описан в статье на arxiv.
Читать дальше →
Всего голосов 50: ↑46 и ↓4 +42
Просмотры 15K
Комментарии 15

Капсульные сети от Хинтона

Блог компании Recognitor Обработка изображений *Машинное обучение *


27 октября 2017 года появилась статья доктора Джофри Хинтона с соавторами из Google Brain. Хинтон — более чем известный ученый в области машинного обучения. Он в свое время разработал математику обратного распространения ошибок, был научным руководителем Яна Лекуна — автора архитектуры сверточных сетей.

Хоть презентация была достаточно скромная, корректно говорить о революционном изменении подхода к искусственным нейронным сетям (ИНС). Назвали новый подход «капсульные сети». Пока в российском сегменте интернета мало информации о них, поэтому восполню этот пробел.
Читать дальше →
Всего голосов 32: ↑31 и ↓1 +30
Просмотры 20K
Комментарии 20

Можно ли запихнуть распознавание номеров в любой тамагочи?

Блог компании Recognitor Алгоритмы *Обработка изображений *Машинное обучение *
Про распознавание номеров мы рассказываем на Хабре давным давно. Надеюсь даже интересно. Похоже настало время рассказать как это применяется, зачем это вообще нужно, куда это можно запихнуть. А самое главное — как это изменяется в последние годы с приходом новых алгоритмов машинного зрения.


Всего голосов 24: ↑24 и ↓0 +24
Просмотры 17K
Комментарии 34
1

Информация

Местоположение
Россия
Сайт
cvml.ru
Численность
2–10 человек
Дата регистрации