VPS с видеокартой (часть 2): вычислительные возможности

    В предыдущей статье, когда мы рассказывали про нашу новую услугу VPS с видеокартой, мы не затронули некоторые интересные аспекты использования виртуальных серверов с видеоадаптерами. Пришло время дополнить тестирование.



    Для использования физических видеоадаптеров в виртуальных средах мы выбрали технологию RemoteFX vGPU, которая поддерживается гипервизором Microsoft. При этом на хосте должны быть установлены процессоры с поддержкой SLAT (EPT от Intel или NPT/RVI от AMD), а также соответствующие требованиям создателей Hyper-V видеокарты. Ни в коем случае не стоит сравнивать это решение с настольными адаптерами в физических машинах, которые обычно показывают лучшую производительность при работе с графикой. В нашем тестировании vGPU будет конкурировать с центральным процессором виртуального сервера — вполне логично для вычислительных задач. Отметим также, что помимо RemoteFX существуют и другие сходные технологии, например NVIDIA Virtual GPU — она позволяет передавать графические команды каждой виртуальной машины напрямую в адаптер без трансляции их гипервизором. 

    Тесты


    В тестах использовалась машина с 4 вычислительными ядрами на 3,4 ГГц, 16 ГБ оперативной памяти, твердотельным накопителем (SSD) на 100 ГБ и виртуальным видеоадаптером с 512 МБ видеопамяти. В физический сервер установлены профессиональные видеокарты NVIDIA Quadro P4000, а гостевая система работает под управлением Windows Server 2016 Standard (64-bit) со стандартным видеодрайвером Microsoft Remote FX.


    ▍GeekBench 5


    Для начала запустим актуальную версию утилиты GeekBench 5, которая позволяет измерить производительность системы для приложений OpenCL.


    Этот бенчмарк мы использовали в предыдущей статье и он только подтвердил очевидное — наш vGPU слабее производительных настольных видеокарт для решения типичных «графических» задач.

    ▍GPU Caps Viewer 1.43.0.0


    Созданную компанией Geeks3D утилиту нельзя назвать бенчмарком. Тестов производительности она не содержит, но позволяет получить информацию об используемых аппаратных и программных решениях. Здесь можно увидеть, что наша виртуальная машина с vGPU поддерживает только OpenCL 1.1 и не поддерживает CUDA, несмотря на установленный в физическом сервере видеоадаптер NVIDIA Quadro P4000.


    ▍FAHBench 2.3.1


    Официальный бенчмарк от проекта распределенных вычислений Folding@Home посвящен решению узкоспециализированной задачи компьютерного моделирования свертывания белковых молекул. Это нужно для исследования причин возникновения связанных с дефектными белками патологий — болезней Альцгеймера и Паркинсона, коровьего бешенства, рассеянного склероза и т.д. Утилита FAHBench не может всесторонне оценить вычислительные мощности виртуального видеоадаптера, но позволяет сравнить производительность CPU и vGPU в сложных расчетах. 


    Измеренная с помощью FAHBench производительность вычислений на vGPU с использованием OpenCL оказалась примерно в 6 раз (для метода моделирования implicit — примерно в 10 раз) выше аналогичных показателей для достаточно мощного центрального процессора.

    Дальше приведем результаты вычислений с двойной точностью.


    ▍SiSoftware Sandra 20/20


    Еще один универсальный пакет для диагностики и тестирования компьютеров. Он позволяет в деталях изучить аппаратную и программную конфигурацию сервера и содержит огромное количество разнообразных бенчмарков. Помимо вычислений с использованием CPU, Sandra 20/20 поддерживает OpenCL, DirectCompute и CUDA. Нас в первую очередь интересуют включенные в бесплатную версию Sandra Lite наборы эталонных вычислительных тестов общего назначения (GPGPU) с использованием аппаратных ускорителей. 


    Результаты довольно неплохие, хотя они немного ниже ожидаемых для видеоадаптера NVIDIA Quadro P4000. Вероятно сказываются накладные расходы на виртуализацию.


    В Sandra 20/20 есть сходный набор эталонных тестов для центрального процессора. Запустим их, чтобы сравнить результаты с вычислениями на vGPU.


    Преимущества видеоадаптера видны наглядно, однако настройки общем пакете тестов не вполне идентичны, к тому же в результатах нельзя увидеть показатели с нужной степенью детализации. Мы решили провести несколько отдельных испытаний. Сначала определили пиковую производительность vGPU с помощью набора простых математических расчетов с использованием OpenCL. Этот бенчмарк по сути аналогичен мультимедийному (не арифметическому!) тесту Sandra для CPU. Для сравнения на ту же диаграмму поместим результат мультимедийного теста центрального процессора VPS. Даже CPU с четырьмя вычислительными ядрами заметно проигрывает vGPU.


    От синтетических тестов перейдем к вещам практическим. Определить скорость кодирования и декодирования данных нам помогли криптографические тесты. Здесь сравнение результатов для vGPU и CPU также показало явное преимущество ускорителя.


    Еще одна сфера применения vGPU — финансовый анализ. Такие расчеты несложно распараллелить, но для их выполнения потребуется видеоадаптер, поддерживающий вычисления с двойной точностью. И опять результаты говорят сами за себя: достаточно мощный процессор вчистую проигрывает GPU.


    Последний проведенный нами тест — научные расчеты с высокой точностью. Графический адаптер снова справился лучше центрального процессора с умножением матриц, быстрым преобразованием Фурье и другими подобными задачами.


    Выводы


    vGPU плохо подходят для запуска графических редакторов, а также приложений для 3D-рендеринга и обработки видео. Адаптеры для настольных систем справляются с графикой куда лучше, зато виртуальный может быстрее CPU выполнять параллельные вычисления. За это нужно сказать спасибо производительной оперативной памяти и большему количеству арифметико-логических модулей. Сбор и обработка данных с различных датчиков, аналитические расчеты для бизнес-приложений, научные и инженерные расчеты, анализ и тарификация трафика, работа с торговыми системами — существует масса вычислительных задач, для решения которых GPU незаменимы. Конечно можно собрать такой сервер дома или в офисе, но за покупку «железа» и приобретение лицензионного ПО придется выложить кругленькую сумму. Помимо капитальных затрат существуют и операционные издержки на обслуживание, включающие в том числе и счета за электроэнергию. Существует амортизация — оборудование со временем изнашивается, а морально устаревает еще быстрее. Виртуальные серверы этих недостатков лишены: их можно создавать по мере необходимости и удалять, когда потребность в вычислительной мощности пропадет. Платить за ресурсы только когда они нужны всегда выгодно. 
    • +32
    • 4,7k
    • 2
    RUVDS.com
    1 456,61
    RUVDS – хостинг VDS/VPS серверов
    Поделиться публикацией

    Комментарии 2

      0

      А решения с cuda у вас есть? Иногда хочется поэкспериментировать со сверточными сетями, но на ноутбуке не хватает памяти у графического адаптера.

        0
        По идее, технологии виртуализации VGPU не поддерживают CUDA, поэтому мы не проводили подобных тестов. При желании, вы можете взять на 3 дня бесплатную тестовую виртуальную машину и поэкспериментировать с ней. О результатах сообщите нам, добавим в текст.

      Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

      Самое читаемое