• Использовать машинное обучение не сложно. Для этого достаточно в течение недели…

      image


      В прошлых статьях я попытался рассказать про основы ценообразования и построения дерева принятия решений покупателя для классического ритейла. В данной статье расскажу про очень нестандартный кейс и постараюсь убедить вас, что использовать машинное обучение не так сложно, как кажется. Статья менее техничная и скорее призвана показать, что можно начать с малого и это уже принесет ощутимую пользу для бизнеса.

      Читать дальше →
    • Вия, Уая, Вая, Вайя – “трудности перевода”, или что скрывается за новой платформой SAS Viya (Вайя)



           В сети можно найти огромное количество разнообразных статей о методах использования алгоритмов математической статистики, о нейронных сетях и в целом о пользе машинного обучения. Данные направления способствуют существенному улучшению жизни человека и светлому будущему роботов. Например, заводы нового поколения, способные работать полностью или частично без вмешательства человека или машины с автопилотом.

          Разработчики объединяют комбинации этих подходов и методов машинного обучения в различные направления. Эти направления впоследствии получают названия, оригинальные и не очень, например: IOT (Internet Of Things), WOT (Web Of Things), Индустрия 4.0 (Industry 4.0), Artificial Intelligence (AI) и другие. Данные концепции объединяет то, что их описание является верхнеуровневым, то есть не рассматриваются ни конкретные инструменты и технологии, ни уже готовые к внедрению системы, а основной целью является визуализация желаемого результата. Но технологии уже существуют, хотя часто не имеют единой платформы.

        Читать дальше →
      • Как вы выбираете продукты в магазине?

          image
          Самая главная формула успеха — знание, как обращаться с людьми. Теодор Рузвельт


          В прошлой статье попытался рассказать про основы аналитики ценообразования. Теперь давайте поговорим о более интересных вещах.


          Вы когда-нибудь задумывались о том, почему вы покупаете определенные продукты в магазинах, как выбираете среди множества аналогов? Скорее всего, четкого ответа под все возможные походы в магазин дать не получится, многие из них спонтанны. Но общая идея очевидна – при походе в магазин вы пытаетесь закрыть имеющуюся потребность (в еде, гаджетах, развлечениях, блэкджеке). В данной статье на примере продуктовых ритейлеров расскажу об имеющемся опыте, как используя некоторые базовые логические предположения и анализ сообществ в графах, можно определить, как именно покупатели выбирают товар.

          Читать дальше →
        • Собираем данные о поведении клиентов на сайте

            В предыдущей статье мы разбирались, как делать персонализированные предложения на сайте интернет-магазина. Сегодня расскажем, как собирать данные о поведении его посетителей, чтобы затем строить отчёты по воронке продаж, догонять «брошенные корзины» и подбирать товарные рекомендации. Посмотрим, почему для качественной персонализации недостаточно простой веб аналитики и как лучше понять своего клиента с помощью SAS Customer Intelligence 360.


            Читать дальше →
          • Потоковая аналитика: быстрый запуск с SAS ESP

              Применение аналитических алгоритмов на потоке данных сейчас одна из самых актуальных задач в области построения аналитических систем. Множество высокоточных предиктивных моделей, например, разработанных на показаниях с датчиков промышленных установок, уже готовы предупреждать серьезные аварии на производстве, но для этого их нужно выполнять на конечных устройствах («edge devices»), там, где показания с сенсоров поступают в реальном времени. Решить эту проблему и перенести аналитику в «онлайн» призван продукт SAS Event Stream Processing. В этой публикации хотелось поделится опытом его настройки на примере прикладной задачи – анализа изображений с видеокамер.


              Читать дальше →
            • Основы программирования на SAS Base. Урок 4. Создание наборов данных SAS

                В предыдущей статье мы изучили, как читать внешние необработанные данные. А сегодня познакомимся с оператором SET, который считывает стандартные наборы данных SAS (SAS Data Set), научимся создавать срезы данных, настраивать постоянные атрибуты, а также изучим несколько полезных функций SAS. Я снова постараюсь изложить материал максимально простым языком, используя как можно больше примеров.


                Читать дальше →
              • Как мы искали признаки врачебных ошибок



                  В 2006 году в голове моего тестя разорвалась аневризма и его свалил инсульт. К вечеру того дня он уже шутил и порывался ходить по больничной палате. Повторный инсульт, который случился под наблюдением врачей, его мозг не выдержал — тесть перестал разговаривать, ходить и узнавать родных. В другом госпитале его поставили на ноги, но из-за врачебной ошибки при первоначальном лечении он навсегда лишился речи, а его личность изменилась до неузнаваемости.

                  То, что с ним произошло, называется внутрибольничным инсультом и это один из маркеров (или иначе — триггеров) системных проблем в медицинской организации. Их нужно анализировать, чтобы снизить число предотвратимых врачебных ошибок в стационарах и повысить качество лечения пациентов.

                  В США этим вопросом озадачились в начале 2000-х. Массачусетский Institute for Healthcare Improvement (IHI) разработал методику IHI Global Trigger Tool for Measuring Adverse Events, которую затем внедрили передовые клиники США и Европы.

                  В 2016 году мы (российский офис SAS) попытались создать систему анализа медицинских триггеров по методике IHI в России. Расскажу, что из этого вышло.
                  Читать дальше →
                • Оптимизация цен в оффлайн ритейле

                    Данная статья открывает цикл, посвященный розничной торговле. Идею использования аналитики в ритейле можно изобразить в виде вот такого маркетингового круга:



                    Основная идея, на первый взгляд, бесполезной картинки – показать, что аналитика позволяет предсказать последствия принятия тех или иных бизнес решений, основываясь на последующем изменении покупательского спроса. И чем лучше мы понимаем спрос, агрегируя информацию из разных каналов, тем лучше мы будем предсказывать результат. Короче говоря, картинка идеального мира, и каждый идет к этому миру своим путем.


                    Сегодня речь пойдет об аналитике ценообразования в офлайн ритейле.

                    Читать дальше →
                  • Как выявляют риски в госконтроле и зачем для этого машинное обучение



                      В предыдущей статье на тему государственного риск-менеджмента мы прошлись по основам: зачем государственным органам управлять рисками, где их искать и какие существуют подходы к оценке. Сегодня поговорим о процессе анализа рисков: как выявить причины их возникновения и обнаружить нарушителей.
                      Читать дальше →
                    • Мечтают ли госорганы об электрорисках?

                        Риски. Они повсюду

                        Риск-менеджмент выручает нас каждый день. Когда мы переходим дорогу, наша естественная нейронная сеть оценивает обстановку, прикидывает скорость таксиста, яростно рвущегося на желтый свет, определяет вероятность сломать ключицу при падении с капота автомобиля и предлагает меру по минимизации риска — подождать секунд пять и только после этого двинуться вперед. Обработка угроз встроена в наши гены, даже если обычно мы называем это иначе.

                        Но стоит заговорить о «рисках» в приличном обществе, собеседники начинают рассуждать об инвестициях, кредитном портфеле, методах аллокации банковского капитала и стресс-тестировании — всё как-то о финансах. Да, банки были пионерами в применении передовых методов анализа рисков. Однако риски — это не только про деньги.

                        Риск-менеджмент — универсальная управленческая дисциплина, которая применима в любом процессе, где что-то происходит, есть какой-то ожидаемый результат и существует вероятность, что мы его не получим. Проще говоря, почти всегда и везде. И в работе государственных органов тоже.
                        Читать дальше →

                      Самое читаемое