company_banner

Краткая история оптической связи — от Древней Греции к спутникам Маска



    Мы живем в информационную эру, где интернет — базовое право человека. Достигнуть текущего уровня развития было непросто, но мы смогли, и сейчас технологии позволяют нам жить в том будущем, которое еще недавно раскрывалось лишь на страницах книг. Понятно, что технологии возникли не вдруг, некоторые из них уходят корнями в далекое прошлое.

    Одна из этих технологий — оптическая связь. Ее использовали еще в античности. Ну а сейчас у нас есть подводные магистрали, спутниковые лазерные системы и многое другое. Давайте посмотрим, как оптическая связь менялась с течением времени.

    Семафоры и гелиографы


    То, что скорость света гораздо больше скорости звука, люди поняли очень давно. И это знание они стали применять на практике. Речь идет о световых сигналах, которые активно использовались, например, в Древней Греции. Конечно, догадались использовать свет и другие цивилизации, но у греков все это было развито особенно хорошо.

    Графический телеграф — реконструкция из музея в г. Салоники, Греция

    Греки построили систему, известную как Фриктория. Это башни на вершинах гор. Стража на башнях по цепочке зажигала огни, которые были хорошо видимы на расстоянии до 50 км. Соответственно, отправленное сообщение уходило в нужную точку очень быстро. В некоторых источниках даже говорится о том, что именно так по Греции распространилось сообщение о взятии Трои.


    Именно греки придумали специальный код для световых сигналов. У башен было две группы по 5 факелов. Каждый из них представляет собой элемент квадрата Полибия. Соответственно, изменение местоположения элементов в этой матрице позволяло кодировать и передавать самые разные сообщения. Еще один вариант — гидравлический телеграф, который использовался по время Первой Пунической войны для отправки сообщений между Сицилией и Карфагеном.

    Вот что говорит Википедия по поводу этого телеграфа: «На стержнях были нанесены различные заранее заданные коды в разных точках по высоте. Чтобы отправить сообщение, отправляющий оператор будет использовать фонарик, чтобы подать сигнал принимающему оператору; как только они будут синхронизированы, они одновременно откроют патрубки на дне своих контейнеров. Вода будет стекать до тех пор, пока уровень воды не достигнет желаемого значения, после чего отправитель опускает факел, а операторы одновременно закрывают свои краны. Таким образом, продолжительность видимости факела отправителя может быть соотнесена с конкретными заранее заданными кодами и сообщениями».

    Применялись семафоры и гораздо позже. В 18 веке была создана иная разновидность оптического телеграфа, сеть которых позже была распространена по всей Франции. Это была коммуникационная сеть военных.


    Отдельный элемент системы — башня с подвижными шестами. Был разработан «алфавит», где каждой букве соответствало определенное положение шестов. Первая линия оптического телеграфа была сооружена между Парижем и Лиллем. Положение шестов меняли при помощи 196 разных положений — так что изображать можно было не только буквы, но и отдельные слова. Каждая станция обслуживалась двумя работниками. Один следил за соседней башней и ее шестами, второй — копировал положение шестов соседа, и так — по цепочке. Проблемой такой системы было то, что работала она лишь в светлое время суток и только при относительно хороших погодных условиях. Облачность, дождь, темнота — все это останавливало работу семафоров.


    Но в светлое время суток и при хорошей погоде система работала просто отлично. Cкорость передачи данных составляет около 2-3 символов в минуту между соседними станциями. От Парижа до Лилля один символ доходил примерно за две минуты, а это 230 км. Для того времени — просто мечта.

    Системы, основанные на тех либо иных сигнала широко использовались в XIX и XX веках, особенно в военное время. После изобретения азбуки Морзе все упростилось во много раз.

    Изобретение Белла


    Сейчас существует много DIY-проектов, где аудиосигнал передается при помощи лазера. Построить такую систему не так и сложно. Но все эти проекты базируются на идее Александра Белла, который еще в 1880 году создал «фотофон». Основной носитель информации в нем — свет, не лазер, конечно, но солнечный свет. При этом именно фотофон Белл считал самым важным своим изобретением, а не телефон.


    Действие этого прибора основано на свойстве селена менять электропроводимость под воздействием солнечных лучей. Они отражаются от зеркала, которое, в свою очередь, вибрирует под влиянием звука. Получатель сигнала здесь — как раз кристаллические селеновые ячейки. Зеркало модулировало луч света, фокусируя или рассеивая свет от источника. Белл с партнером создали тестовую установку, которая помогла передать сигнал на расстояние около 213 метров.

    Но, конечно, у этого устройства было огромное количество недостатков, включая возможность работы лишь при ясной погоде и на относительно небольшом расстоянии. Но как бы там ни было, изобретение Белла считается предшественником современных волоконно-оптических линий.

    Ну а потом — стекловолокно


    Если исключить парочку военных проектов, то телекоммуникации в XX веке реализовывались посредством коаксиальных кабелей и излучения с частотой 1-10 ГГц. Так все было до момента появления оптоволокна в 70-х годах прошлого века. Очень быстро именно оно стало основным каналом связи с огромной пропускной способностью.

    Оптоволокно стало ответом на проблемы коаксиальной связи. Главный ее недостаток заключается в том, что сигнал нужно усиливать примерно через каждый километр, чтобы компенсировать потери при передаче. При беспроводной радиочастотной (РЧ) связи интервал ретранслятора может быть намного больше, но в обоих случаях полоса пропускания ограничена ~ 100 Мбит / с из-за «низкой» частоты несущей РЧ.


    Оптоволокно решало все эти проблемы. И спустя пару лет оптоволокно стало тем, чем оно является и сейчас. Так, еще в 1977 году компания General Telephone and Electronics (сейчас корпорация GTE) отправила первый в мире прямой телефонный трафик через оптоволоконную систему со скоростью 6 Мбит / с. Сегодня всемирная волоконно-оптическая сеть насчитывает более 400 миллионов километров, что почти в три раза превышает расстояние до Солнца.

    Оптоволоконную связь улучшили благодаря методам мультиплексирования, включая мультиплексирование по длине волны, временным разделением или пространственным мультиплексированием с разделением. В лаборатории комбинация этих методов показала отличный результат — данные удалось передать со скоростью в 11 Пбит/с, с потерями всего в 5% на каждый километр. Ретрансляторы устанавливаются каждые 80 км, что, конечно, гораздо лучше, чем в случае коаксиального кабеля.

    Интернет из лампочки


    Кроме оптоволокна, есть и другие способы скоростной передачи данных, причем безо всяких кабелей. Это беспроводная оптическая связь, как она есть. LiFi — двунаправленная высокоскоростная беспроводная коммуникационная технология.


    Правда, для этого способа нужна светодиодная лампочка, а не лампа накаливания. Понятно, что работает технология только в зоне прямой видимости, причем чем дальше о точки передачи данных, тем хуже связь.


    Одна из первых иллюстраций, разъяснявших принцип работы системы. Здесь, как видим, наладонники вместо смартфонов

    Для LiFi разработан собственный протокол, IEEE 802.15.7, который определяет три физических (PHY) уровня с разными пропускными способностями:

    • PHY I был создан для наружного применения и работает на скоростях от 11.67 Кбит/с до 267.6 Кбит/сек.
    • PHY II позволяет достигать скоростей передачи данных от 1.25 Мбит/с до 96 Мбит/сек.
    • PHY III предназначен для множественных источников с определённым методом модуляции: Color Shift Keyring (CSK), что можно перевести как «Манипуляция смещением длины волны». PHY III может достигать скорости от 12 Мбит/с до 96 Мбит/сек.

    Технология не получила особого распространения, но кое-где применяется. В основном, речь идет о промышленных системах, в местах с сильными электромагнитными помехами, где почти любая радиосвязь невозможна или затруднена.

    А что насчет больших расстояний и беспроводной оптической связи?



    К сожалению, здесь похвастаться особо нечем. Многие компании начинали тестовые испытания технологии передачи данных при помощи лазеров или иных оптических систем. Но, как правило, эти испытания не выходили за пределы лаборатории или тестовой площадки.


    Например, в прошлом году разработчики из Alphabet построили в Кении экспериментальную беспроводную сеть, которая работает на основе света. Это не оптоволокно, основа системы — луч света, который фокусируют на удаленной точке приема — приемной станции.

    Проект получил название Project Taara. В ходе его реализации удалось добиться передачи данных на расстояние примерно в 20 км без развертывания проводной инфраструктуры. Тесты показали неплохой результат. Но несмотря на это, проект потом решили закрыть.

    То же самое можно сказать относительно второго проекта этой же компании, Loon. Несколько лет этот проект развивали, но буквально несколько недель назад приняли решение закрыть.

    Есть менее масштабные проекты, которые были реализованы. Например, компания Koruza предлагает лазерную связь на скорости около 10 Гбит/с, но расстояние при этом не превышает 150 м. В некоторых случаях интернет-провайдеры используют лазерные трансмиттеры для обеспечения связью удаленных от основной магистрали объектов. Иногда подобные системы создают и пользователи — но такие системы не слишком распространены.

    Кроме того, в начале года Илон Маск рассказал о том, что спутники Starlink оснастили лазерной связью для покрытия полярных регионов. И уже через год все спутники Starlink, которые отправляются на орбиту, будут оснащаться лазерной связью.

    Благодаря дополнительному виду связи широкополосный доступ в интернет получат и жители Аляски, о чем компания рассказывала в заявке для FCC.

    Лазеры дают возможность спутникам держать связь не только с наземными станциями, но и друг с другом, причем неважно, где находится «коллега» — в той же орбитальной плоскости, или в соседней. Соответственно, оператор сможет минимизировать количество наземных станций, расширяя зону покрытия удаленных регионов, где наземных станций вообще нет. Кроме того, снижается и latency, поскольку уменьшается количество посредников между спутниками и наземными станциями.

    Selectel
    ИТ-инфраструктура для бизнеса

    Комментарии 2

      0
      То, что скорость света гораздо больше скорости звука, люди поняли очень давно. И это знание они стали применять на практике. Речь идет о световых сигналах, которые активно использовались, например, в Древней Греции.
      Сомневаюсь, что для античных войн требовалась сверх-звуковая передача информации. Выбор в пользу огня, а не рога имеет и более простое обьяснение
        0
        К сожалению, здесь похвастаться особо нечем. Многие компании начинали тестовые испытания технологии передачи данных при помощи лазеров или иных оптических систем. Но, как правило, эти испытания не выходили за пределы лаборатории или тестовой площадки.

        Атмосферно оптические линии связи (АОЛС) широко используются операторами связи и интернет провайдерами по всему миру. Как пример можно указать наших соотечественников:
        1. ЛАНтастИКа (Санкт-Петербург) скорость до 1 Гбит/с и дальность связи до 3км
        2. Artolink — скорость до 40Гбит/с и дальность связи до 4.4км.

        По зарубежным каналам связи (FSO)
        3. fSONA — скорость до 10Гбит/с и дальность связи до 3.6км.

        Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

        Самое читаемое