Что скрывают протоны?

Автор оригинала: Natalie Wolchover
  • Перевод
Двадцать лет назад физики начали исследовать загадочную асимметрию внутреннего строения протона. Результаты их работы, опубликованные в конце февраля 2021 года, объясняют, как антивещество помогает стабилизировать ядро каждого атома.

Очень редко упоминается тот факт, что протоны — позитивно заряженные частицы в центре атома — являются отчасти антивеществом.

В школе нам говорили, что протон представляет собой группу из трех элементарных частиц под названием кварки — два u-кварка (верхних) и один d-кварк (нижний), чьи электрические заряды +2/3 и -1/3 соответственно в сумме дают протону заряд +1. Но за этой элементарной картиной скрывается гораздо более странная и еще неразгаданная история.


Издалека кажется, что протон состоит из трех частиц под названием кварки. Но если приглядеться получше, можно увидеть множество появляющихся и исчезающих частиц

На самом деле, внутри протона вращается вихрь из меняющегося количества шести типов кварков, их противоположно заряженных аналогов из антивещества (антикварков) и глюонов, элементарных безмассовых частиц, которые связывают вместе другие частицы, трансформируются в них и быстро множатся. Каким-то образом этот бурлящий вихрь оказывается совершенно стабильным и на первый взгляд простым, имитируя по определенным аспектам трио кварков. «То, как это все функционирует, честно говоря, похоже на чудо», — отметил Дональд Гисаман, физик-ядерщик из Аргоннской национальной лаборатории в Иллинойсе.

Тридцать лет назад исследователи обнаружили поразительное свойство этого «протонного моря». Теоретики ожидали, что различные типы антивещества в нем будут распределены равномерно, но было похоже, что количество нижних антикварков значительно превышало количество верхних антикварков. Затем десять лет спустя другая группа исследователей заметила намеки на неподдающиеся объяснению вариации в соотношении верхних и нижних антикварков. Но эти результаты были на грани чувствительности эксперимента.

Итак, 20 лет назад Дональд Гисаман и его коллега Пол Раймер начали работать над новым экспериментом, чтобы получше разобраться в этом вопросе. Эксперимент, получивший название SeaQuest («Морской квест»), наконец завершился, и исследователи опубликовали его результаты в журнале Nature. Они измерили внутреннее антивещество протона тщательнее, чем когда бы то ни было, и обнаружили, что на каждый верхний антикварк в среднем приходится 1,4 нижних антикварка.


Самуэль Веласко / Quanta Magazine

Эти данные непосредственно говорят в пользу двух теоретических моделей протонного моря. «Появилось первое реальное доказательство, подтверждающее эти модели», — сказал Раймер.

Одна из них — модель «пионного облака» — это популярный подход, существующий уже несколько десятилетий, который делает упор на тенденцию протона испускать и реабсорбировать частицы под названием пионы, которые принадлежат к группе частиц, известных как мезоны. Вторая, так называемая статистическая модель, рассматривает протон как контейнер, наполненный газом.

Дальнейшие запланированные эксперименты помогут исследователям выбрать одну из этих двух моделей. Но какая бы из них ни была верной, массив данных эксперимента SeaQuest о внутреннем антивеществе протона принесет непосредственную пользу, особенно физикам, которые сталкивают протоны на околосветовых скоростях на Большом адронном коллайдере. Обладая точной информацией о составе сталкиваемых объектов, они смогут более эффективно разбирать продукты, оставшиеся после столкновения, в поисках доказательств существования новых частиц или эффектов. Хуан Рохо из Амстердамского свободного университета, который оказывает помощь в анализе данных БАК, считает, что результаты эксперимента SeaQuest могут иметь большое влияние на поиски новой физики, которые в настоящее время «ограничены нашими знаниями о структуре протона, в частности о его антивеществе».

Третий не лишний


В течение короткого периода времени около полувека назад физики полагали, что разобрались с протоном.

В 1964 году Мюррей Гелл-Манн и Джордж Цвейг независимо друг от друга предложили модель, получившую впоследствии название кварковая: идея заключалась в том, что протоны, нейтроны и связанные с ними более редкие частицы представляют собой пучки из трех кварков (как их назвал Гелл-Манн), а пионы и другие мезоны состоят из одного кварка и одного антикварка. Такая схема объясняла какофонию частиц, разлетающихся из ускорителей частиц высокой энергии, поскольку спектр их зарядов мог быть построен из двух- и трехчастных комбинаций. Затем, примерно в 1970 году, исследователи, работающие на Стэнфордском линейном ускорителе (SLAC), казалось, подтвердили кварковую модель: выстрелив высокоскоростными электронами в протоны, они увидели, как электроны отрикошетили от объектов внутри.

Но вскоре картина стала менее ясной. «По мере того, как мы все тщательнее пытались измерить свойства этих трех кварков, мы обнаружили, что происходит что-то еще», — сказал Чак Браун, 80-летний член команды SeaQuest из Национальной ускорительной лаборатории им. Энрико Ферми (Фермилаб), работающий над кварковыми экспериментами с 1970-х годов.

Изучение импульса трех кварков показало, что их массы составляют малую часть общей массы протона. Кроме того, когда исследователи на SLAC стреляли электронами на большей скорости в протоны, они увидели, что электроны отталкивают больше частиц внутри. Чем быстрее электроны, тем короче их длина волны, что сделало их чувствительными к более мелким элементам протона; это похоже на увеличение разрешения микроскопа. Открывались все новые и новые внутренние частицы, которым, казалось, нет конца. «Мы не знаем, где предел и какое самое высокое разрешение возможно получить», — сказал Гисаман.

Результаты стали иметь больше смысла, когда физики разработали истинную теорию, к которой кварковая модель лишь приближается: квантовая хромодинамика или КХД. КХД, сформулированная в 1973 году, описывает «сильное взаимодействие», самую большую силу в природе, с помощью которой частицы под названием глюоны связывают пучки кварков.

КХД предсказывает тот самый вихрь, который был выявлен в экспериментах по рассеянию. Сложности возникают из-за того, что глюоны ощущают ту самую силу, которую они несут. Этим они отличаются от фотонов, несущих более простую электромагнитную силу. Это «самоуправство» создает беспорядок внутри протона, давая глюонам полную свободу действий для возникновения, размножения и расщепления на кратковременные пары кварков и антикварков. Уравновешивая друг друга, эти близко расположенные противоположно заряженные кварки и антикварки издалека остаются незамеченными. Только три несбалансированных «валентных» кварка — два верхних и нижний — составляют общий заряд протона. Но физики поняли, что стреляя электронами на большей скорости, они поражали меньшие цели.

Однако странности на этом не закончились.

Из-за самоуправства глюонов уравнения КХД невозможно решить, поэтому у физиков не получалось и до сих пор не получается рассчитать точные прогнозы теории. Но у них не было оснований предполагать, что глюоны будут расщепляться на один тип пары кварк-антикварк (а именно нижний) чаще, чем на другой. «Мы ожидали, что будет появляться равное количество тех и других пар», — сказала Мэри Альберг, теоретик-ядерщик из Сиэтлского университета, объясняя свои доводы того времени.


Мэри Альберг, физик-ядерщик из Сиэтлского университета, и ее соавторы давно утверждают, что пион играет важную роль в формировании сущности протона.
Фото предоставлено Сиэтлским университетом


Вот почему исследователей из New Muon Collaboration в Женеве так шокировали результаты эксперимента по рассеянию мюонов. В 1991г. они столкнули мюоны (более тяжелые родственники электронов) с протонами и дейтронами, состоящими из одного протона и одного нейтрона, сравнили результаты и пришли к выводу, что в протонном море больше нижних антикварков, чем верхних.

Части протона


Вскоре теоретики предложили несколько возможных вариантов объяснения асимметрии протона.

Один из них связан с пионом. С 1940-х годов физики наблюдали, как протоны и нейтроны обмениваются пионами внутри атомных ядер, как игроки в команде, бросающие друг другу баскетбольные мячи, что помогает им держаться вместе. Размышляя над структурой протона, исследователи пришли к выводу, что он также может подбрасывать баскетбольный мяч себе, то есть может ненадолго испускать положительно заряженный пион, превращаясь на это время в нейтрон, и затем реабсорбировать его. «Если во время эксперимента вы думаете, что смотрите на протон, это не так, потому что на какое-то время этот протон будет переходить в состояние пары нейтрон-пион», — сказала Альберг.

Если говорить точнее, протон превращается в нейтрон и пион, состоящий из одного верхнего кварка и одного нижнего антикварка. Поскольку этот призрачный пион имеет нижний антикварк (пион с верхним антикварком не может так легко материализоваться), такие теоретики, как Альберг, Джеральд Миллер и Тони Томас, утверждали, что модель пионного облака объясняет большее количество нижних антикварков протона, выявленное в результате измерений.


Самуэль Веласко / Quanta Magazine

Появились и другие аргументы. Клод Буррели и его коллеги из Франции разработали статистическую модель, которая рассматривает внутренние частицы протона как молекулы газа в комнате, хаотично двигающиеся на разных скоростях, которые зависят от того, целым или полуцелым количеством момента импульса обладает частица. При настройке с учетом данных многочисленных экспериментов по рассеянию модель предположила преобладание антикварков.

Прогнозы двух вышеупомянутых моделей не были идентичными. Большую часть общей массы протона составляют энергии отдельных частиц, которые прорываются в протонное море и из него, и эти частицы несут различные энергии. Модели по-разному спрогнозировали, как должно измениться соотношение верхних и нижних антикварков по мере подсчета антикварков, несущих больше энергии. Физики измеряют связанную с этим величину под названием доля импульса антикварка.

Когда исследователи в Фермилабе в 1999 году в рамках эксперимента NuSea измерили соотношение верхних и нижних антикварков в качестве функции импульса антикварка, результат их работы просто воодушевил всех, вспоминает Альберг. Эти данные свидетельствуют о том, что среди антикварков с большим импульсом (настолько большим, что они находились на грани диапазона обнаружения прибора) внезапно оказалось больше верхних антикварков, чем нижних. «Каждый теоретик говорил: 'Погодите-ка', — сказала Альберг, — Почему кривая развернулась, когда эти антикварки получили большую долю импульса?»

Пока теоретики ломали голову над этим вопросом, Гисаман и Раймер, которые работали над экспериментом NuSea и знали, что данным на грани иногда не стоит доверять, решили построить эксперимент, где можно было бы в комфортных условиях исследовать более широкий диапазон импульсов антикварка. Они назвали его SeaQuest.

Из того, что было


С кучей вопросов о протоне, но без денег, они начали собирать эксперимент из использованных деталей. «Нашим девизом было: снижай количество отходов, используй повторно, перерабатывай», — сказал Раймер.

Они приобрели несколько старых сцинтилляторов в лаборатории в Гамбурге, оставшиеся детекторы частиц в Лос-Аламосской национальной лаборатории и железные пластины, блокирующие радиацию, которые изначально были использованы в циклотроне Колумбийского университета в 1950-х годах. У них получилось применить магнит размером с комнату, использованный в эксперименте NuSea, и провести свой новый эксперимент на ускорителе протонов в Фермилабе. Получившийся из этих деталей «Франкенштейн» тем не менее был не лишен своего очарования. По словам Брауна, который помог найти все части, звуковой индикатор, сигнализирующий, что протоны поступают в устройство, был сделан 50 лет назад: «Когда он издает звуковой сигнал, становится тепло на душе».




Физик-ядерщик Пол Раймер (сверху) с устройством для эксперимента SeaQuest
Эксперимент в Фермилабе, собранный в основном из использованных деталей


И наконец они его запустили. В эксперименте протоны поражают две цели: пузырек с водородом, который по сути представляет собой протоны, и пузырек с дейтерием, ядро которого состоит из одного протона и одного нейтрона.

При попадании в любую из двух целей, один из валентных кварков протона иногда аннигилирует с одним из антикварков протона или нейтрона мишени. «Аннигиляция имеет уникальную сигнатуру и производит мюон и антимюон», — сказал Раймер. Эти частицы вместе с другим «мусором», образовавшимся в результате столкновения, затем врезаются в старые железные пластины. «Мюоны могут проходить сквозь них, а все остальные частицы блокируются», — сказал он. Обнаружив мюоны на обратной стороне пластин и восстановив их исходные траектории и скорости, «вы можете восстановить хронологию событий, чтобы выяснить, какую долю импульса несут антикварки».

Поскольку протоны и нейтроны зеркально отражают друг друга, там, где у одного расположены частицы верхнего типа, у другого — нижнего типа, и наоборот. Сравнив данные из двух пузырьков, можно сразу увидеть соотношение верхних антикварков и нижних антикварков в протоне, но этому, конечно, предшествовало 20 лет работы.

В 2019 году Альберг и Миллер на основе модели пионного облака рассчитали, к каким результатам должен прийти эксперимент SeaQuest. Их прогноз вполне совпадает с новыми данными SeaQuest.

Новые данные, которые показывают постепенное повышение, а затем выход на плато в соотношении между нижними и верхними антикварками, а не внезапную реверсию, также совпадают с результатами более гибкой статистической модели, разработанной Буррели и его коллегами. И все же Миллер называет эту конкурирующую модель «описательной, а не прогнозирующей», поскольку она настроена, чтобы соответствовать данным, а не выявлять физический механизм, объясняющий преобладание антикварков. «А в наших расчетах я горжусь как раз тем, что они представляют собой истинный прогноз», — сказала Альберг. «Мы не настраивали никакие параметры заранее».

В электронном письме Буррели утверждал, что «статистическая модель более мощная, чем модель Альберга и Миллера», поскольку она учитывает эксперименты по рассеянию как с поляризованными, так и не поляризованными частицами. Миллер категорически не согласился, отметив, что модель пионных облаков объясняет не только состав антивещества протона, но и магнитные моменты различных частиц, распределение зарядов и время распада, а также «связывание и, следовательно, существование всех ядер». Он добавил, что пионный механизм «важен в широком смысле для таких вопросов, как: «Почему существуют ядра? Почему существуем мы?».

В конечном стремлении понять протон решающим фактором может быть спин или собственный момент импульса. Эксперимент по рассеянию мюонов в конце 1980-х показал, что спины трех валентных кварков протона составляют не более 30% от общего спина протона. «Кризис протонного спина» можно выразить следующим вопросом: «что же составляет остальные 70%?» И как снова сказал опытный исследователь Чак Браун, старожил Фермилаб, «должно быть, что-то еще».

Экспериментаторы будут исследовать спин протонного моря в Фермилабе и, затем, в проектируемом электронно-ионном коллайдере Брукхейвенской национальной лаборатории. Альберг и Миллер уже работают над расчетами полного «мезонного облака», окружающего протоны, которое, помимо пионов, включает более редкие «ро-мезоны» (rho mesons). В отличие от пионов, ро-мезоны обладают спином, поэтому они каким-то образом должны влиять на общий спин протона, что Альберг и Миллер и надеются определить.

По словам Брауна, эксперимент Фермилаб SpinQuest, в котором участвуют многие исследователи из SeaQuest и используются детали этого эксперимента, почти готов к работе. «Если повезет, мы получим данные этой весной; это будет зависеть, по крайней мере, частично, от прогресса в разработке вакцины против вируса. Забавно, что решение столь глубокого и непонятного вопроса о внутреннем строении ядра, зависит от ситуации с вирусом COVID в стране. Все в мире взаимосвязано, не так ли?».
Timeweb
VDS, инфраструктура и решения для бизнеса

Комментарии 17

    0
    .
      0
      Три же кварка, два одного, один другого
      0

      Прочитал статью. http://n-t.ru/ns/fm/op.htm


      Может и правда, нейтрон это протон с электроном на орбите, который экранирует заряд?
      Столько времени про частицы говорят, а что это не известно.

        +17
        Протон с электроном на орбите это водород…
          0

          в той статье он предлагается как релятивисткий, высокоскоростной.

            +1

            Возможен достаточно редкий бетта распад протона с захватом орбитального электрона. Тогда образуется нейтрон. Правда такое возможно только в ядрах с сильным дефицитном нейтронов. Для сравнительно свободных протонов этот распад запрещен по энергии.

            0
            «протон с электроном на орбите» — атом водорода что ли? Это уже диполь, а не нейтральная система. Заряды будут скомпенсированы только в эквипотенциальной плоскости, а не везде.
            0
            Может и правда, нейтрон это протон с электроном на орбите, который экранирует заряд?

            Может этот электрон находиться под горизонтом кваркового вихря. И его не видно?
            Физика элементарных частиц крайне сложная и интересная штука).
              +1

              Думаю, его заряд в -1 был бы заметен на фоне зарядов +2/3 и -1/3 у кварков. Да и остальные процессы должны куда-то девать этот электрон. Плюс к тому, почему тогда протоны не захватывают электрон извне и не превращаются в нейтроны, в том числе, когда их бомбардируют? Ещё конфликт с наличием стабильных ядер — настолько близкие заряды в +2/3 и -1 должны разрывать нейтроны в ядрах, а этого не наблюдается для большого количества ядер вплоть до свинца. И наконец, электрон вроде как не подвержен сильному взаимодействию в принципе, а значит, должен улететь от протона, если бы в нейтроне был именно протон и электрон.

                0
                Плюс к тому, почему тогда протоны не захватывают электрон извне и не превращаются в нейтроны, в том числе, когда их бомбардируют?
                И наконец, электрон вроде как не подвержен сильному взаимодействию в принципе
                В принципе такая реакция возможна, только в ней еще должно участвовать электронное антинейтрино и, соответственно, вероятность такого события околонулевая. И да, электроны не участвуют в сильном взаимодействии, эта реакция основана на слабом.
                  0
                  Вне атомного ядра, свободный нейтрон через ~15 минут распадается на протон и электрон.
                    0
                    Плюс к тому, почему тогда протоны не захватывают электрон извне и не превращаются в нейтроны, в том числе, когда их бомбардируют?

                    чойто не захватывает? Еще как захватывает — если надавить посильнее.

                    И наконец, электрон вроде как не подвержен сильному взаимодействию в принципе, а значит, должен улететь от протона,

                    он и улетает. Через 9 минут примерно.

                    А если серьезно — решение проблемы строения протона (и нейтрона) — это, я полагаю, и есть в т.ч. «новая физика». В процессе, я полагаю, еще найдут некоторые неизвестные сущности, наподобии т.н. «темной энергии» и «темной материи» в космологии.
                  +5
                  Статья Игоря Иванова на Элементах подробнее и понятнее, если кто заинтересовался.
                    +2
                    В школе нам говорили, что протон представляет собой группу из трех элементарных частиц под названием кварки — два u-кварка (верхних) и один d-кварк (нижний), чьи электрические заряды +2/3 и -1/3 соответственно в сумме дают протону заряд +1.

                    «В школе нам говорили» — у вас была крутая школа.
                      0
                      чьи электрические заряды +2/3 и -1/3 соответственно

                      Интересно вышло что заряд протона +1 а у кварков выходит дробный.
                      Это просто следствие что мы приняли заряд за 1. И не регистрировали в то время частиц с отличным зарядом. Если тогда знали о кварках и их зарядах то думаю протону дали бы заряд +3 а у кварков был бы +2 и -1. Интересно что дает заряд электрону ведь по современным представлениям он не имеет структуры. Но имеет и заряд и массу и спин. И электрон удобен для исследования микромира из за того что чем больше его скорость тем более мелкие частицы можно рассмотреть.
                      Может есть еще какие-то частицы из которых сделано все? Типа назовем их коды)
                      Отвечаю за заряд спин и прочее. А масса частиц это просто энергия связи всех частиц на всех уровнях вложения их составляющих? Просто из всех свойств масса частиц гуляет в самых больших пределах да и по формуле E=mc2 и исследованиям показывающим что часть массы частиц составляет именно энергия связи мне кажется что массы как таковой в действительности и нет. А есть просто форма энергии.
                        0

                        Это уже придумали :)


                        мегаэлектронвольт (МэВ)
                        Благодаря уравнению Эйнштейна E = mc2, связывающему массу с энергией, МэВ можно рассматривать либо как единицу энергии, равную 160,2176462 фемтоджоуля, либо как единицу массы, равную 1,782662 x 10-27 грамма или 0,001073544 атомной единицы массы (atomic mass unit).
                        +1
                        Я не могу отделаться от ощущения, что вакуум — это автоволновая (активная) среда, а элементарные частицы — это многомерные автоволновые образования (автосолитоны). При этом автоколебания этих вихрей — это переходы между измерениями (которых, согласно разным моделям, гораздо больше 3, например, 26).

                        При этом сам вакуум находится в состоянии постоянных параметрических осцилляций, т.е. какой-то (или какие-то) из его параметров постоянно меняют свое значение, что и обусловливает наличие минимальных значений (квантов) длины и времени.

                        Одним и возможных (навскидку) подтверждений данного предположения является поведение фотонов: известно, что в автоволновой среде, подверженной параметрическим осцилляциям, автоволны, совпадающие по частоте с этими осцилляциями, начинают двигаться строго прямолинейно, причем направление движения определяется разностью фаз между частотой автоволны и осцилляциями.

                        Т.е. можно предположить, что частицы с нулевой массой покоя — это автоволновые вихри, строго синхронизированные с частотой параметрических осцилляций вакуума, а частицы с ненулевой массой — это вири, «выпавшие из резонанса».

                        К сожалению, мне не удалось до сих пор найти ни одной модели, которая бы рассматривала подобную картину. С одной стороны, скорее всего, работает принцип «от добра добра не ищут» — зачем выдумывать что-то новое, если старые подходы вполне хорошо работают с тем, что известно. От этого принципа вряд ли откажутся, пока не найдется что-то, что «ни в какие вороте не лезет».

                        С другой стороны, это может быть связано с тем, что теория автоволновых вихрей в основном развивается для одно- и двумерных случаев, для трехмерного — это уже «слишком сложно». Что уж говорить о 26 измерениях…

                        Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

                        Самое читаемое