Звуковая диверсия: механизм генерации ультразвуковых щелчков у ночных мотыльков как защита от летучих мышей



    Большие клыки, сильные челюсти, скорость, невероятное зрение и еще многое другое это особенности, которыми пользуются хищники всех пород и мастей в процессе охоты. Добыча в свою очередь также не желает сидеть сложа лапки (крылья, копыта, ласты и т.д.) и придумывает все новые и новые способы избежать нежелательного близкого контакта с пищеварительной системой хищника. Кто-то становится мастером камуфляжа, кто-то обмазывается ядом, а кто-то швыряет в лицо обидчику свои внутренности (привет морским огурцам). Но есть и те, чей защитный механизм не виден и даже не слышен для нас. Мотыльки — излюбленное блюдо летучих мышей. Много миллионов лет и те и другие шлифовали свои навыки владения ультразвуком. Мыши используют его для поиска жертв, а мотыльки — для обнаружения хищника. Но «предупрежден значит вооружен» не достаточно для мотыльков, потому они выработали способность создавать «радиопомехи», нарушающие ультразвуковое «зрение» летучих мышей. Как они это делают, учитывая их 100% глухоту, и насколько это эффективно помогает им избежать гибели? Будем искать ответы в докладе исследовательской группы. Поехали.

    Основа исследования


    Когда охотишься ночью, нужно иметь либо очень хорошее зрение, либо острый нюх, либо отличный слух. Летучие мыши выбрали последнее, в каком-то смысле. Использование эхолокации очень выгодно для летучих мышей. Во-первых, охота в ночное время суток ограничивает число потенциальных опасностей и конкуренции в поисках пищи. Во-вторых, ночью очень много насекомых, то есть шансы покушать после 18:00 значительно выше.

    Летучие мыши производят ультразвук разного частотного диапазона в зависимости от вида. При этом даже у одного вида частота меняется с течением времени: в начале 130-150 кГц, а потом 30-40 кГц.



    Во время охоты летучие мыши «испускают» ультразвуковые волны, которые «врезаются» в окружающие ее объекты, в том числе и возможную добычу. Отраженные же волны улавливаются летучей мышью и она может маневрировать среди препятствий или же точно сфокусировать атаку на добыче.

    Когда эволюция раздавала таланты, мотыльки тоже не стояли в стороне. Они способны вырабатывать ультразвуковые помехи или же ложные сигналы, убеждающие летучую мышь в их несъедобности. Некоторые виды мотыльков используют стридуляцию. Этот необычный термин пояснить очень просто: помните как сверчки летом «поют»? Вот это и есть стридуляция. Другим же ярким, точнее звонким мастером этого таланта, являются цикады.

    Альтернативным источником звуков у мотыльков могут быть ударные «кастаньеты» — модифицированные генитальные структуры (да, ученые назвали гениталии, вырабатывающие звук, кастаньетами; а вы думали люди науки лишены креативности?).

    Однако большинство видов мотыльков используют тимбалы (не путать с цимбалами) — специальные кутикульные образования на поверхности тела с воздушной «подушкой» под низом.

    В рассматриваемом сегодня исследовании ученые уделили внимание роду мотыльков Yponomeuta, в котором большинство видов (а их около сотни) имеют в своем арсенале необычное образование — полупрозрачный участок на крыльях без чешуек между венами Cu1b
    и Cu2. Ученые обнаружили, что к этому участку прилегает ряд гребней, что может говорить о причастности данной области к звукообразованию посредством стридуляции (возможно).


    На изображении слева (А) белым обведена область полупрозрачного образования, а на изображении справа (В) РЭМ снимки этой же области.

    Ученые поставили перед собой задачу ответить на ряд вопросов: данный полупрозрачный участок производит звук или нет, каковы его акустические свойства (если производит все таки) и как эти звуки применяются мотыльком в его жизни.

    Главными же испытуемыми, которые должны были помочь найти ответы на вышепоставленные вопросы, стали особи двух видов мотыльков — Y. evonymella и Y. cagnagella.


    Найдите 10 отличий: Y. evonymella (слева) и Y. cagnagella (справа).

    Испытуемые были взяты из дикой природы еще на стадии личинок. Образовавшиеся куколки содержались в специальных контейнерах 297 х 159 х 102 мм при температуре 21 °C.

    Результаты наблюдений


    Ученые сделали запись свободных и фиксированных полетов испытуемых: 15 свободных и 2 фиксированных полета Y. evonymella; 9 фиксированных полетов Y. cagnagella. Во время полетов мотыльки производили одинаковые ультразвуковые щелчки во время каждого взмаха крыльев (графики ниже).


    Спектрограмма ультразвуковых щелчков во время одного взмаха крыльями мотылька.

    На спектрограмме выше видны разноцветные участки. Первые (красные) это частотный диапазон звуков, продуцируемых мотыльками подсемейства Arctiinae против летучих мышей. А вторые (синие) это слуховой диапазон летучих мышей вида Eptesicus fuscus.

    Всего ультразвуковых импульсов во время взмаха было зафиксировано два: один в начале взмаха и второй в конце взмаха. Именно во время первого импульса частота щелчков была больше. Число щелчков на один импульс, если судить по наблюдениям, совпадает с числом полос на полупрозрачном участке. У Y. evonymella среднее значение щелчков на 1 ультразвуковой импульс равно 12.6 ± 1.7, а полос на полупрозрачном участке у них 11 (обратите внимание на нумерацию на РЭМ снимке крыла).

    Далее ученые удалили тимбалы (область 260 х 800 мкм) у 12 особей Y. evonymella и записали звуки во время их полета до и после удаления. Также было подсчитано число щелчков за период в 100 мс, что является эквивалентом примерно 3 взмахов крыла.

    Семь особей после удаления не производили щелчков, восемь — лишь 1 щелчок, а четверо производили щелчки, но в меньшем количестве и с более низкой амплитудой. Как выяснилось у этой четверки области тимбалов (полупрозрачные участки) были удалены не полностью, посему их исключили из дальнейшего анализа.

    Опытным путем ученые подтвердили, что мотыльки обоих испытуемых видов производят звуки. Теперь их решили проверить на слух (20 особей вида Y. evonymella и 4 особи Y. cagnagella).

    Ученые воспроизводили ультразвук, пока испытуемые свободно летали в тестовом помещении. Ни одна особь не отреагировала на это. Эксперимент повторили, но разделив особей по видам в отдельные контейнеры, где они находились в состоянии покоя. И опять же никто даже не шелохнулся.

    При этом, поместив 10 особей Y. evonymella в одну камеру для полетов, ученые увидели реакцию испытуемых друг на друга. И она была такой же, как и в предыдущих тестах, то есть никакой.

    А что же со стридуляцией? Ученые проверили есть ли признаки трения каких-либо частей тела для производства звуков у испытуемых мотыльков. И как оказалось, таковых нет. Обратите внимание на движения крыльев мотылька во время контролируемого полета на видео ниже.


    На данном видео мы можем видеть какие происходят изменения в положении крыльев и их частей во время взмаха.

    С исследуемым полупрозрачным участком не было замечено трения других участков тела мотылька в любой из моментов взмаха. Но щелчки же как-то появляются. И происходит это посредством вращения заднего крыла вдоль своей оси от основания до кончика во время верхней и нижней фаз взмаха крыльями.

    Детальное рассмотрение этого процесса показало, что во время супинации (вращательное движение конечностью) в начале взмаха анальный и югальный отделы крыла складываются вниз относительно его передней части вдоль клавальной борозды.


    Полет мотылька, вид сбоку.

    Этот процесс протекает от вершины до основания крыла, таким образом полупрозрачная область также задействуется. Во время этого и возникают ультразвуковые щелчки.



    В таблице выше показаны результаты анализа десяти щелчков, зафиксированных в поперечном направлении (90°) у всех испытуемых (14 Y. evonymella и 9 Y. cagnagella). Были установлены спектральные параметры, продолжительность и амплитуда щелчков.

    Помимо этого был проведен анализ и щелчков (по 5 на каждого из 8 особей) горизонтальной направленности (0 °, 45 °, 90 ° и 180 °).


    Среднее значение уровня звуков восьми испытуемых Y. evonymella, зафиксированных с четырех направлений: 0 ° — микрофон спереди от мотылька, 45 ° — спереди сбоку, 90 ° — сбоку, 180 ° — сзади.

    Особых отличий не было выявлено: 0° и 45°, Z = 0,3, p = 1,0; 0° и 180°, Z = -2,3, p = 0,13; 45° и 180°, Z = -2,4, р = 0,11.



    Также ученые рассчитали на каком расстоянии летучие мыши будут слышать щелчки мотыльков в зависимости от положения. Результаты следующие: 6.0 ± 0.4 м при 0°, 6.5 ± 0.4 м при 45°, 7.9 ± 0.7 м при 90° и 5.6 ± 0.4 м при 180°. Эти показатели отображены в виде диаграммы выше (В).

    А вот на графике А мы видим амплитуду отраженного звука, которая варьируется в диапазоне −35 … −43 дБ при частотах в диапазоне 20…160 кГц.

    Тут можно послушать аудиозапись звуков мотылька.

    Для более детального ознакомления с исследованием настоятельно рекомендую заглянуть в доклад ученых.

    Эпилог


    Эволюция может быть беспринципной, беспощадной, странной и даже ироничной, как показывает пример исследуемых мотыльков. Будучи абсолютно лишенными слуха, эти создания не лишены «голоса». Используя полупрозрачные участки на крыльях во время взмахов, мотыльки выдают ультразвуковые щелчки, которые сбивают с толку жаждущих ими полакомиться летучих мышей.

    Такое необычное приспособление это факт, но он породит еще немало дебатов на тему того, как оно образовалось, какие эволюционные изменения прошли мотыльки для развития подобного механизма, и с чего все начиналось.

    Мы лишний раз получили подтверждение, что мир полон удивительных созданий, которые не перестают удивлять своими талантами, о которых мы и не догадывались.

    И, конечно же, пятницы оффтоп:

    Тут у всех, кто страдает моттефобией (боится мотыльков), наверное сердце остановилось от ужаса.

    Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята.


    Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

    VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps до весны бесплатно при оплате на срок от полугода, заказать можно тут.

    Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel Dodeca-Core Xeon E5-2650v4 128GB DDR4 6x480GB SSD 1Gbps 100 ТВ от $249 в Нидерландах и США! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
    • +33
    • 6,6k
    • 7
    ua-hosting.company
    366,00
    Хостинг-провайдер: серверы в NL / US до 100 Гбит/с
    Поделиться публикацией

    Похожие публикации

    Комментарии 7

      +3
      Это просто удивительно, мотыльки со встроенной автоматической системой подавления локации. В авиации есть нексолько похожих механизмов «ослепления» радара противника.
      Главное чтобы потом не выяснилось что есть мотыльки и с ракетами.
        +2
        Есть жук, который может стрелять из задней части брюшка саморазогревающейся смесью химических веществ: жук бомбардир Весьма сложный механизм, но до ракет им еще далеко.
          +3
          А этот красавец (Cicindela repanda) — одно из самых быстрых наземных животных, в буквальном смысле слепнет в погоне за добычей, потому что его маленькие глазки не успевают видеть.

          image
      • НЛО прилетело и опубликовало эту надпись здесь
          –1
          Далее ученые удалили тимбалы (область 260 х 800 мкм) у 12 особей Y. evonymella и записали звуки во время их полета до и после удаления.

          Британские учёные, услышав анекдот про таракана, не смеются, а составляют программу исследований.
          Анекдот
          Ученые проводят эксперимент над тараканом на тему: «Где у таракана находятся уши».
          Оторвали у таракана первую пару лапок, дали команду ползти: таракан ползёт.
          Оторвали вторую пару лапок, скомандовали ползти: таракан ползёт.
          Оторвали последние лапки, скомандовали: «Ползи!»,- таракан не шелохнётся.
          -Так и запишем: «Уши у таракана располагаются в задних лапах...»
            +2
            А насколько летучие мыши восприимчевы к данным помехам? В соревновании брони и снаряда, на данный момент, кто побеждает?
            Например такой эксперимент. Выпустили летучую мышь и 10 мотыльков с поврежденным «ултразвуковым излучателем». Летучая мышь съела их всех. То же но с нормальными мотыльками, летучая мышь съела X мотыльков.
              +4

              На последнем видосе мотылёк сам бы мог закусить мышкой :)

            Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

            Самое читаемое