Липидам холод нипочем: предотвращение кристаллизации воды при -263 °С



    Чего больше всего на планете? Что находится на вершине наших потребностей наряду с воздухом и едой? Что по мнению одного бородатого анекдота роднит человека с огурцом? Ответ прост — вода. Это химическое соединение играет центральную роль во многих макро- и микропроцессах: от климатических изменений до химического строения живых организмов. H2O обладает рядом химических и физических свойств, которые тем или иным образом применяются учеными разных направлений. Изменение определенных параметров приводит к появлению новых свойств или же изменению старых. Еще с малых лет много из нас знают, что вода в нормальных условиях закипает при 100 °С и замерзает при температуре ниже 0 °С. И тут ученые решили это изменить.

    Сегодня мы с вами познакомимся с исследованием, в котором ученым удалось создать воду, не замерзающую даже при -263 °С. Какие манипуляции были проведены для достижения этого, какими новыми свойствами и характеристиками стала обладать «вечно» жидкая вода и какова польза от сего исследования? Ответы будем искать в докладе исследовательской группы. Поехали.

    Основа исследования


    В основе сего труда лежит процесс предотвращения кристаллизации воды при низких температурах. Для этого необходимо изменить геометрию воды, в чем может помочь так называемый «конфайнмент», то есть удержание. Этот механизм позволяет предотвратить низкотемпературную кристаллизацию молекул в гексагональную структуру, в результате чего получается аморфная вода. Подобное физическое удержание воды на нанометровом уровне ученые назвали наноконфайнментом. Проще сказать, чем сделать, но ученые не были бы учеными, если не обладали упорством и парой тузов в рукаве. В качестве тузов выступили искусственные липиды с циклопропильными модификациями в гидрофобных цепях, которые демонстрируют уникальное жидкокристаллическое поведение при низкой температуре. Эти липиды позволяют поддерживать аморфное состояние воды вплоть до -263 °С.

    В качестве модели замкнутой воды в клеточной среде ученые выбрали конфайнмент внутри мягких интерфейсов, таких как образующиеся при самоорганизации поверхностно-активных веществ в водной среде. Такая модель может помочь понять механизмы выживания клетки при низких температурах.

    Исследователи обращают наше внимание на то, что размерные эффекты проявляются в различных фазах, образованных гидратированными моноацилглицеролами*, при разных температурах и уровнях гидратации*.
    Моноацилглицеролы* — класс глицеридов, которые состоят из молекулы глицерина, связанной с жирной кислотой через сложноэфирную (эстерную) связь.
    Гидратация* — присоединение к молекулам или ионам молекул воды.
    Моноацилглицеролы обладают полиморфизмом, то есть разной кристаллической структурой в зависимости от условий: пластинчатая (Lα), обратная двунепрерывная кубическая (QII), обратная гексагональная (HII), обратная мицеллярная (L2).

    Проблема заключается в том, что это многообразие вариантов теряется при достижении температур ниже комнатных, когда общий класс липидов кристаллизуется в пластинчатую фазу (Lc), в которой липидные хвосты упаковываются в кристаллическую решетку дальнего порядка. Если же температура опускается ниже нуля, то обнаруживается сосуществование пластинчатой фазы Lc и льда при всех уровнях гидратации.

    Получается, что использовать подобные липиды нельзя? Не совсем. Липиды можно изменить так, чтобы можно было применить их положительные свойства, избежав нежелательных ограничений. В предыдущих исследованиях ученым успешно удалось заменить цис-двойную связь в середине липидной цепи моноолеина на циклопропильную группу. В результате этой манипуляции получится новый липид — монодигидростеркулин (MDS), фазовое поведение которого показывает отсутствие обратной гексагональной фазы и стабильность фазы QIID при температурах до 4 °C.

    Взяв за основу вышеописанные наработки и теории, ученые представили собственное исследование, в котором описан новый тип липидов, образующих мезофазы с нестандартными свойствами при низкой температуре. Самым ярким свойством является способность удерживать стеклообразную воду при температурах вплоть до 10 К и при очень малых скоростях охлаждения.

    Полиморфность липидов


    Для начала ученые поясняют определенные нюансы касательно липидного полиморфизма. В природе на данный момент существует очень ограниченное число липидов, которые могут формировать QII фазы.

    Липидные цепи обеспечивают фундаментальные элементы всех мезофаз. Их молекулярная структура, определенная длина, кривизна, положение и степень ненасыщенности суммарно влияют на конечную мезофазу*.
    Мезофаза* — состояние вещества между жидкостью и твердым телом.
    Если заменить цис-двойную связь моноацилглицеролов цис-циклопропильным фрагментом, то кривизна цепи и длина липидов сократится изначальная, а вот фракционное уплотнение и боковое напряжение хвостов будут значительно изменены. А для изменения жесткости липидного хвоста необходимо изменить количество и положение циклопропильных групп, а также длины и кривизны гидрофобных цепей.

    Ученые синтезировали во время исследования три липида (структуры показаны на ): монодигидростеркулин (MDS), циклопропанированный липид монолактобациллин (MLB) — аналог моновакцеина (MV) и DCPML — монолинолеина (ML).


    Изображение №1

    На графиках выше показаны результаты малоуглового рентгеновского рассеяния (МРР): фазовая диаграмма состава и температуры образца MLB (1b), фазовая диаграмма состава и температуры образца DCPML ().

    Судя по наблюдениям, гидратированный MLB имеет последовательность перехода, как у классических моноацилглицеринов (1b), в котором наблюдаются Lα, QII G и QIID при повышении уровня гидратации. В отличие от MDS, HII фаза присутствует в MLB при высокой температуре.

    Удалось выяснить, что фаза HII и кубическая фаза QIID сохраняют стабильность в избытке воды. Это наблюдение позволило определить граничную степень гидратации для обеих фаз путем анализа параметров решетки при каждом уровне гидратации.

    В случае липида DCPML учеными было замечено необычное явление — формирование кубической фазы QIIG при 22 °C при содержании воды всего лишь 5% ().

    Предыдущие исследования показали, что формирование HII чистыми гидратированными моноацилглицеринами возможно только при высоких температурах (выше комнатных). Стабильные HII фазы при комнатных и физиологических температурах (≈ 36.6 °C) требуют применения гидрофобных молекул или наличия простого эфира, а не сложноэфирной связи.

    Образование фазы HII при комнатной температуре предполагает смещение фазовой диаграммы DCPML к более низким температурам и гидратации, что было подтверждено в данном исследовании.

    Образец DCPML с 12,5% воды сначала постепенно охладили до -20 °C, а затем снова нагрели до 22 °C. В конце каждого этапа охлаждения и нагрева система была уравновешена, также были собраны данные МРР ().


    Изображение №2

    Фазовый переход от Lα к QIIG происходит в температурном диапазоне −15…−10 °C во время процедур как нагрева, так и охлаждения. Также было выявлено формирование новой стабильной липидной кубической фазы при отрицательных температурах. При нагревании происходит уменьшение радиуса водного канала фазы QIIG — от 8,4 Å при -10 °C до 7,8 Å при 22 °C.

    В итоге, ученые получили абсолютно стабильную кубическую фазу QIIG при минусовых температурах. Такое наблюдение противоречит общепринятым фактам, что липиды (например, моноолеин) образуют кубические фазы, которые кристаллизуются в пластинчатую кристаллическую фазу и лед при температуре ниже 0 °C.

    Свойства и поведение воды


    Жидкокристаллическая природа DCPML при отрицательных температурах свидетельствует о нестандартных характеристиках воды, заключенной в наноканалах. Размером водных областей (плит или каналов) можно манипулировать путем изменения соотношение вода / липид. Переходы плавления изучались с помощью дифференциальной сканирующей калориметрии (DSC) измерений мезофаз при различных уровнях гидратации (2b).

    Образцы DCPML подвергались циклической термообработке (нагрев — охлаждение — нагрев) от −70 °C до 60 °C со скоростью сканирования 5 °C в минуту. То, что мы видим на графике 2b, было получено во время процесса второго нагрева. При концентрации воды в образце 20 и 25% виден пик таяния льда при 0 °C, что характерно для чистой воды (без добавления липидов). Если же гидратация увеличивается, то этот пик начинает снижаться (15% воды), а потом и вовсе исчезает (5% и 10% воды). Вывод достаточно очевиден — конфайнмент в фазах Lα и QIIG при низком уровне гидратации предотвращает кристаллизацию воды при рассматриваемой скорости охлаждения.

    Также на графике 2b можно заметить небольшие пики при высоких температурах, которые соответствуют переходам между различными геометриями и соответствуют результатам МРР (). Отличия в температуре перехода на несколько градусов можно пояснить разной скоростью нагрева и, соответственно, разным временем уравновешивания. Конечно не стоит забывать и про погрешность (1.5%), зависимую от состава разных образцов.

    Ученые отмечают, что в ML при температурах до -60 °C присутствует образование льда, тогда как в DCPML сохраняется аморфное состояние. Это говорит о том, что конфайнмент сам по себе не может предотвратить кристаллизацию, а работает в содружестве с жидкокристаллическим поведением липидов для достижения этого.

    Далее образцы охлаждали до -263 °С со скоростью 0,1 °С в минуту, уравновешивали и затем нагревали с той же скоростью. На изображениях и 2d мы видим результаты FWS измерений во время нагрева, которые показывают отсутствие перехода первого порядка в DCPML с низким содержанием воды. Ученые выбрали образец с содержанием воды 7.5%, дабы обеспечить единую геометрию во всем диапазоне температур ниже нуля.

    Профили FWS на графиках и 2d не показывают никаких скачков в районе 0 °С, хоть и наблюдается повышение подвижности при температуре около -50 °C. Ученые отмечают, что полученная из коммерческого ML вместо DCPML мезофаза с такой же топологией и содержанием воды демонстрирует плавление при температуре около -10 °C (пики на вставках на и 2d). DCPML при 15% воды в образце также показывает скачок, который соответствует таянию льда при температуре около -10 °C. Однако, судя по данным DSC, интенсивность переходов в таком случае значительно меньше, то есть лишь часть воды участвует в образовании льда. А отсутствие скачка для липид-липидного перехода подтверждает отсутствие кристаллической фазы Lc в DCPML.

    Эксперименты с применением широкоугольной рентгеновской дифракции (WAXS) при низких температурах показали гексагональную структуру льда в образцах с гидратацией 20% и 25 (2e), а также отсутствие кристаллизации в области WAXS для других образцов. Данные наблюдения еще раз подтверждают жидкокристаллическую природу пластинчатой фазы (Lα) и отсутствие кристаллического льда при низкой гидратации.

    Напоследок ученые применили еще и ЯМР-спектроскопию для исследования подвижности воды и фазового поведения (2f). Для образца с 7,5% воды предел обнаружения был достигнут при 0 ° C, что указывает на коэффициент диффузии меньше 10-11 м2/с. А для образца с 10% диффузия наблюдалась до -11 °С.

    Таким образом, квазилинейная зависимость диффузии от температуры подтверждает жидкое состояние воды в рассматриваемом температурном диапазоне, а дополнительные сведения, полученные от FWS и DSC анализов, подтверждает переход воды из жидкого в стеклообразное состояние при низких температурах.


    Изображение №3

    Ученые объединили все собранные данные и смогли составить фазовую диаграмму воды, заключенной в мезофазах DCPML ().

    Стоит отметить, что наблюдаемые процессы и характеристики тесно связаны с особенностями, которые отличают DCPML от всех других известных моноацилглицеринов, а именно с общим сдвигом фазовых переходов в сторону более низких температур и гидратации, а также с отсутствием Lc даже при чрезвычайно низких температурах.

    На изображении 3b показаны результаты МРР измерений липидной геометрии, наложенные поверх фазовой диаграммы воды (). При гидратации наблюдается обратный переход Lα → QIIG → Lα в диапазоне температур от -10 °C до 0 °C. Занятно, что присутствие жидкой воды при минусовых температурах связано со стабильностью кубической фазы QIIG. А при понижении гидратации во время охлаждения комбинация липидного беспорядка и геометрического ограничения фазы Lα предотвращает образование льда при любой температуре.

    Если же степень гидратации повышать, то будет наблюдаться образование гексагонального льда. Наблюдения показали, что при гидратации 20% и охлаждении образца до -30 °C фаза QIIG стабильна в течение нескольких часов, при этом лед не обнаружен. Переход к фазе Lα происходит после инкубации образца в течение 1 часа в температурном режиме -40 °C, а вот тут уже наблюдается образование льда. При нагревании от −40 °C фаза Lα сохраняет стабильность вплоть до 0 °C. В промежутке -40 … -20 °C параметр решетки α показывает ожидаемое снижение (от 39.2 Å до 38.4 Å), типичное для мезофаз. Но уже в промежутке -20 … -10 °C ситуация противоположная: увеличение от 38.4 Å до 39.2 Å, что обычно связано с повышенной гидратацией липидного бислоя.

    В дополнение ко всем наблюдениям, измерениям и различным методикам сканирования, ученые использовали еще и молекулярно-динамическое моделирование, дабы подтвердить результаты исследования.


    Изображение №4

    Исследователи прекрасно понимают, что результаты подобного моделирования сильно зависят от целой совокупности переменных: взаимодействие между молекулами воды и липидов, липид-липидный переход, порог перехода к стеклообразному состоянию и т.д. Однако, они утверждают, что результаты их моделирования полностью согласуются с наблюдениями.

    На изображении показана молекулярно-динамическая модель по температуре плавления пластинчатой мезофазы при 54,3% гидратации. В центре мы видим стартовую конфигурацию, которая частично заполнена льдом (белые сферы) и водой в жидком виде (синие сферы). Слева показана окончательная конфигурация ниже точки плавления. А справа — выше точки плавления. Верхний ряд — система без участия липидов, нижний — с липидами (оранжевые сферы). Изображения 4b это презентация воды, заключенной в кубическую фазу QIIG при гидратации 54,3%, для начальной (в центре) и конечной конфигурации ниже (слева) и выше (справа) температуры плавления. В свою очередь график показывает временную эволюцию воды выше (красная линия) и ниже (черная линия) точки плавления.

    Исследователи отмечают, что при низкой гидратации система следует «стандартному» поведению, то есть переходит от кубической к пластинчатой структуре (4d). При охлаждении фаза QIIG переходит к Lα, демонстрируя внезапное снижение подвижности воды (4e). Меньшая мобильность означает, что системе требуется больше времени для уравновешивания. В этом режиме процесс охлаждения пересекает линию плавления после того, как диффузия уже затруднена, то есть до кристаллизации воды, в результате чего мы наблюдаем стеклообразную воду.

    Для более детального ознакомления с нюансами исследования настоятельно рекомендую заглянуть в доклад ученых.

    Эпилог


    Ученые привыкли расширять границы нашего мировоззрения, понимания различных процессов и явлений. Некоторые исследования становятся отправной точкой будущих технологий и новых открытий, а некоторые — просто пищей для любознательности. Сегодняшнее относится к первой категории. Понимание поведения двух самых важных элементов жизни (воды и липидов) при экстремально низких температурах может помочь в разработке новых методов диагностики и анализа биоматериалов, которые сложно или даже невозможно анализировать в комнатных температурах ввиду их нестабильности. Также ученые говорят о перспективе изменения живых клеток, то есть модификации их к нормальному функционированию в условиях очень низких температур. Другими словами, если рассматривать гипопсихропланеты (−50 °C и ниже) и психропланеты (−50 до 0 °C) в качестве возможных вариантов для колонизации, то данное исследование это маленький шажок на пути к этому.

    Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята!

    Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

    VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps до лета бесплатно при оплате на срок от полугода, заказать можно тут.

    Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel Dodeca-Core Xeon E5-2650v4 128GB DDR4 6x480GB SSD 1Gbps 100 ТВ от $249 в Нидерландах и США! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
    ua-hosting.company
    422,00
    Хостинг-провайдер: серверы в NL / US до 100 Гбит/с
    Поделиться публикацией

    Комментарии 22

      +9
      Еще с малых лет много из нас знают, что вода в нормальных условиях испаряется при 100 °С
      не в этой Вселенной. У нас вода даже с твердого состояния испаряется (сублимация, или возгонка).
        –2
        В нормальных условиях?
          +6

          Конечно. На севере 15 лет прожил, сушильных машин не было, мокрое белье выносится на мороз и моментально встаёт колом при -35, через несколько часов заносить — чуть влажное как прогреется, под утюг самое то. Потом на уроках физике в 7 классе все разжевали, это в школе проходили раньше, сейчас не знаю как с этим.

            0
            Это работает при условии, что влажность воздуха низкая.
              +8
              -35 то самое условие, при котором влажность воздуха низкая.
            0
            я могу ошибаться, но, кажется, в любых условиях (если среда вокруг не плотнее воды)
              +3
              Моя бабушка вполне себе сушила вещи на морозе. Когда мне было около 10 лет я тоже попробовал, но не очень удачно. После втряхивания вместо одной рубашки у меня в руках оказалось две. С тех пор не проверял действительно ли вода с твердого состояния испаряется или нет.
                0
                Проведите простой эксперимент купите форму для льда и залейте туда воду. Положите в морозилку. Спустя где то год льда в формочке будет сильно меньше (если морозилка работает правильно). А со временем лёд может вообще испариться.
                Но в общем и целом автор имел ввиду другую тему как я понял. Тут вопрос интенсивности. 100 °С температура кипения нормальной воды(не дегазированной) в нормальных условиях (это было бы конечно корректнее), 0 °С порог начала кристализации. Вообще тема любопытная. Интересно было бы так перестроить организм человека что бы он мог жить в температурах от -260 до 400. Можно было бы спокойно Антарктиду заселять и на отоплении экономить.)))
                  0
                  В no frost морозилке лед приходится прятать в пакет, иначе его сильно меньше уже через неделю :)
                0
                Испарение идёт при влажности меньше 100%, пока не образуется насыщенный пар
                +5
                Автор перепутал «испаряется» и «кипит».
                +8

                анабиоз все ближе?

                  +1

                  Судя по статье, они синтезировали штуку, похожую на жир, добавили в него 7.5% воды, которая хитро распределилась по этому веществу и не смогла создать кристаллы льда.


                  Штука интересная, но вступление статьи не в тему совершенно и ситуацию не поясняет.

                    0
                    7.5% воды растворённые в спирте наверное тоже не замёрзли бы?
                    0
                    Интересно, насколько токсичная и дорогая в производстве штука получилась. Я бы от такого антифриза в системе отопления не отказался бы.
                      0
                      Думаю, масштабирование до объема системы отопления в ближайшем будущим не предвидится, хотя, я тоже, прочитав заголовок, подумал именно об этом.
                        +1
                        А чем Вам поможет аморфный, т.е. стеклообразный, а вовсе не жидкий, антифриз?
                          0
                          Вот тут важны подробности: при какой температуре, какая вязкость. Если он густеет при низких температурах, как этиленгликоль, то надо его сравнивать с этиленгликолем по цене, токсичности, сроку службы, затратах на утилизацию.
                        +3
                        Ни чего не понял, но автор молодец — интересно)
                          –1
                          -
                            +2
                            Так и не понял какая гидратация в РЕАЛЬНЫХ экспериментах(не моделировании) при температурах -100 и меньше, а также с какой скоростью надо замораживать, чтоб так получилося.
                            Вижу эксперимент с отсутствием «видимого» фазового перехода при 7.5% и 0.1градуса в минуту, но в нем нет наблюдения за строением и свойствами воды.
                            Может, состав просто растягивает переход?

                            Вообще назвать состав, в котором 7.5% воды «водой» это сильно. В сухом дереве ее больше.
                              +1

                              Тема очень интересная, но статья написана таким языком, от которого у меня было стойкое ощущение, что я читаю псевдонаучную хрень; типа, машина сгенерила текст на философскую тему. :)

                              Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.