Обновить
83.07

Big Data *

Большие данные и всё о них

Сначала показывать
Порог рейтинга
Уровень сложности

Можно ли оценить эффективность цифровой трансформации или это просто дань моде?

Уровень сложностиПростой
Время на прочтение5 мин
Количество просмотров1.2K

Цифровая трансформация давно перестала быть громким лозунгом — сегодня это рабочий инструмент, от которого зависит выживание и рост компании. В «Росгосстрахе» я отвечаю за управление отчетностью, и наша задача — не просто автоматизировать процессы, а перестроить архитектуру принятия решений. В этом тексте — о том, как мы измеряем цифровую зрелость, зачем это делать и как использовать метрику как компас в непростом ландшафте изменений. Материал будет полезен тем, кто работает с данными, внедряет новые технологии, управляет трансформацией или просто ищет устойчивые опоры в эпоху цифрового сдвига.

Цифровая трансформация — это не про тренды, а про выживаемость. Но прежде чем менять процессы, важно понять: где мы находимся сейчас и куда действительно стоит двигаться. В этом смысле цифровая зрелость — не модное словосочетание, а инструмент навигации. Я расскажу о нашем подходе: какие шаги мы предпринимаем, какие метрики считаем значимыми и как используем их не ради отчётов, а ради движения вперёд.

По сути, мы решаем одну из самых сложных задач — пытаемся измерить сам процесс перехода, его глубину и устойчивость. Это непросто: цифры упрямы, а перемены часто текут не по линейной шкале. Но без этих измерений всё превращается в хаотичную трату ресурсов. Чтобы что-то улучшить, нужно сначала научиться видеть — не просто глазами, а данными.

Что такое цифровая зрелость и зачем её измерять?

Цифровая зрелость — это не абстрактный рейтинг, а срез состояния компании в моменте: насколько глубоко технологии проникают в процессы, насколько органично они встроены в стратегию, управленческие практики и ежедневные решения. Это не про количество IT-систем, а про то, как устроена ткань бизнеса — от культуры до архитектуры данных.

Читать далее

Скрытая стоимость BI: что не учитывают 8 из 10 компаний при внедрении аналитических систем

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров2.5K

Почему, по данным экспертов GlowByte, целых 80% проектов внедрения систем бизнес-аналитики выходят за рамки изначально запланированного бюджета? Ответ парадоксально прост и сложен одновременно: компании систематически недооценивают реальную совокупную стоимость владения BI-системами. Наши наблюдения показывают, что большинство заказчиков концентрируются исключительно на очевидных статьях расходов, игнорируя множество "скрытых" факторов, которые неизбежно проявляются по мере развития проекта.

За годы работы с десятками проектов внедрения аналитических систем мы в GlowByte выявили закономерность — даже опытные ИТ-директора порой не учитывают до 40% реальных затрат при планировании бюджета на BI-инициативы. В этой статье я поделюсь инсайтами о наиболее типичных "финансовых ловушках", которые подстерегают компании на этом пути.

Читать далее

Оптимизация Spark-приложений: шаг за шагом от базовых техник до продвинутых приёмов

Уровень сложностиСредний
Время на прочтение17 мин
Количество просмотров5.5K

В этой статье мы делимся опытом оптимизации Spark-кода на реальных задачах: рассказываем, как с помощью ручного и автоматического репартицирования ускорить обработку данных, как правильно настраивать оконные функции и запускать множество небольших Spark-приложений внутри одного процесса для экономии ресурсов.

Привет, Хабр! Меня зовут Александр Маркачев и я — Data Engineer команды Голосовой Антифрод в билайн. Расскажу, как борьба с мошенниками может обернуться личным вызовом.

Все техники сопровождаются объяснениями, примерами и рекомендациями для самостоятельного повторения.

Читать далее

Управление отставанием lag в Kafka Consumers: как не просто замерить, а стабилизировать

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров4K

Привет, Хабр!

Сегодня рассмотрим, почему отставание у Kafka-консьюмеров — это не просто строчка в kafka-consumer-groups, а метрика, от которой зависит SLA вашего сервиса. Рассмотрим, как её считать без самообмана, как соорудить собственный мониторинг на Python и Go, а главное — чем именно тушить всплески lag’а: throttle, autoscale и backpressure.

Читать далее

Путь в AI: от студента до инженера, исследователя или разработчика

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров4.5K

Привет, Хабр! Меня зовут Анна Щеникова. Я работаю AI-инженером в Центре RnD МТС Web Services и параллельно лидирую магистерскую программу «Исследования и предпринимательство в искусственном интеллекте» ВШЭ. В МТС занимаюсь всем, что связано с моделями: вместе с коллегами тестирую гипотезы про агентов и мультимодельные подходы.

Переход от студенческой жизни к профессиональной деятельности — важный и сложный этап. Это первые серьезные шаги в карьере, первое понимание, как применить полученные знания в реальном бизнесе.

Я прошла этот путь несколько раз: сначала сама, а потом помогая магистрантам в ВШЭ. Так я увидела, какие ключевые точки нужно проработать, чтобы комфортно и весело перейти от теории к реальным бизнес-задачам. В этом посте расскажу о своем опыте перехода к полноценной работе и поделюсь видением того, что будет актуальным в сфере AI в ближайшем будущем. Надеюсь, это поможет кому-нибудь правильно спланировать карьеру.

Читать далее

LLM-судья: как LLM отсекает правду от лжи?

Время на прочтение28 мин
Количество просмотров2.6K

LLM-as-a-judge — распространённая техника оценки продуктов на основе LLM.

Популярность этой техники обусловлена практичностью: она представляет собой удобную альтернативу дорогостоящей человеческой оценке при анализе открытых текстовых ответов.

Оценивать сгенерированные тексты сложно, будь то «простой» саммари или диалог с чат-ботом. Метрики типа accuracy плохо работают, поскольку «правильный» ответ может быть сформулирован множеством способов, не обязательно совпадающих с образцом. Кроме того, стиль или тон — субъективные характеристики, которые сложно формализовать.

Люди способны учитывать такие нюансы, но ручная проверка каждого ответа плохо масштабируется. В качестве альтернативы появилась техника LLM-as-a-judge: для оценки сгенерированных текстов используются сами LLM. Интересно, что LLM одновременно являются и источником проблемы, и её решением!

Читать далее

Как научить ИИ обслуживать клиентов не хуже человека?

Уровень сложностиПростой
Время на прочтение12 мин
Количество просмотров3.4K

Новость о мощи ChatGPT прогремела уже более двух лет назад, однако крупные компании ещё до сих пор полностью не автоматизировали поддержку клиентов. В этой статье разберём на пальцах, какие данные и надстройки нужны для больших языковых моделей, как сделать так, чтобы внедрение было экономически целесообразным и, наконец, что делать с чат-ботами прошлого поколения.

Читать далее

Федеративное обучение: потенциал, ограничения и экономические реалии внедрения

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров739

Федеративное обучение (Federated Learning, FL) становится всё более заметным элементом технологической повестки в условиях ужесточающихся требований к конфиденциальности данных и законодательных ограничений на их передачу. На прошлой неделе при поддержке канала @noml_community мы поговорили с коллегами (Дмитрий Маслов, Михаил Фатюхин, Денис Афанасьев, Евгений Попов, Роман Постников, Павел Снурницын) о Federated Learning. Получилось неожиданно интересно и полезно. Много говорили о кейсах, чуть меньше - о практических аспектах реализации, особенностях работы с данными и о специфике конфиденциальных вычислений. С большим удовольствием пообщались с коллегами по цеху и основными экспертами этой отрасли. 

https://www.youtube.com/watch?v=JpApLfde38I&list=WL&index=1&t=12s

Мой вывод - FL как технология и как предмет сделали большой шаг вперед к тому, что бы технологии и потребности рынка “пересеклись” в точки эффективности и кажется что такой момент уже близко.

Читать далее

Пакетная репликация данных в аналитическом ландшафте ХД

Уровень сложностиСредний
Время на прочтение14 мин
Количество просмотров963

Наполнение данными хранилища или озера, как правило, является первым большим шагом к доступности аналитической среды для основного функционала и работы конечных пользователей. От эффективной реализации этой задачи зависят стоимость и длительность всего проекта по созданию хранилища данных и сроки предоставления отдельных data-сервисов.

В этой публикации я поделюсь опытом реализации пакетной загрузки больших данных в аналитические хранилища и расскажу, когда следует выбрать именно пакетную загрузку, а когда – онлайн-подход. Отдельно раскрою, как многолетний опыт решения подобных задач был воплощен в промышленном инструменте репликации данных.

Читать далее

Ну ты это, заходи если чё: как сделать единую систему авторизации в корпоративных ботах

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров1.5K

Привет, Хабр! На связи команда данных «МосТрансПроекта». Недавно мы рассказывали про бот «Информатум», в котором хранятся служебные презентации. При разработке системы мы уделили особое внимание защите чувствительной информации. Поэтому доступ к материалам предоставляется сотрудникам только после авторизации и подтверждения их данных. Но что, если появится еще несколько ботов? Неужели сотрудникам придется каждый раз проходить проверку для доступа к новым сервисам, а администраторам тратить время на верификацию? Для решения этой задачи мы разработали универсальное и экономящее время решение, о котором расскажем в данной статье.

Читать далее

Что такое MLFlow и как он помогает в разработке моделей

Уровень сложностиПростой
Время на прочтение8 мин
Количество просмотров2K

Многие начинающие в ML наверняка сталкивались с ситуацией: вы пробуете разные модели, меняете параметры, запускаете обучение снова и снова… и через пару дней уже не можете вспомнить, какой именно набор параметров дал тот самый лучший результат. Или, что еще хуже, вы получили отличную модель на своем ноутбуке, а у коллеги на его машине она не воспроизводится. На помощь придет MLflow.

Читать далее

База для аналитики данных. Как получать данные?

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров5.7K

Я убеждён в том, что аналитикам данных критически-важно иметь доступ без боли, искажений и рисков к наиболее детализированным данным проекта для исполнения своих обязанностей..
Нет данных - нет мультиков аналитики. Работа только с агрегированными и преобразованными по непрозрачной логике данными приводит к ошибкам и отсутствию доверия от бизнеса.
Статья может быть полезна к изучению при принятии решений о развитии аналитики с 0 в проекте.

К сожалению, вопросу получения данных часто не уделяется хоть какое-то внимание.
Бизнесу интересно не получение данных, а инсайты и рекомендации. Принято отдавать этот вопрос на откуп аналитикам и взаимодействию аналитиков и IT. Только у аналитиков редко есть опыт и понимание лучших практик по работе с данными и для IT задача использования данных аналитиками может быть чем-то чужеродным.

Тем не менее, как-то они договариваются. Не сталкивался с примерами, когда совсем не договорились и никакой аналитики нет.
Сталкивался с разными вариантами урона от реализации.

Что там за варианты

Join таблиц в реальном времени на Apache Flink ( Часть 2 )

Уровень сложностиСложный
Время на прочтение3 мин
Количество просмотров986

В данной статье приводится решение проблемы построения витрин данных в реальном времени с помощью Apache Flink. Рассказывается 2 часть подробной реализации решения этой задачи. В данной части рассмотрена проблема учета сообщений на удаление и частично операций update , в связи с чем достигается полная консистентность данных СИ с СП при условии гарантии, что ключ join условия не обновляется.

Читать далее

Ближайшие события

Как Duolingo юзает машинное обучение для прокачки английского: кратко и по делу

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров8.8K

Теперь всё, что раньше делали люди — создание курсов, проверку ответов, адаптацию персонализированных заданий — почти полностью взял на себя ИИ.

Duolingo — это уже давно не просто приложение с разноцветными совами и скучными заданиями. В 2025-м генеративный ИИ позволил Duolingo быстро создавать новые курсы, и за год почти удвоить число языковых курсов! Как им это удалось и что это значит лично для тебя — рассказываем подробнее...

Читать далее

Join таблиц в реальном времени на Apache Flink

Уровень сложностиСложный
Время на прочтение5 мин
Количество просмотров1.6K

Статья посвящена реализации join-операций в системах потоковой обработки данных на базе Apache Flink. Рассматриваются основные подходы к объединению потоков в реальном времени, включая inner join, а также паттерны дедупликации. Уделено внимание использованиюKeyedCoProcessFunction для построения отказоустойчивых и масштабируемых join-пайплайнов. Работа ориентирована на инженеров, строящих real-time витрины и сложные трансформации на Flink в продакшене.

Читать далее

DBT: трансформация данных без боли

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров3.2K

Привет! Меня зовут Кирилл Львов, я fullstack-разработчик в компании СберАналитика. В этой статье хочу рассказать про мощный инструмент трансформации данных — DBT (Data Build Tool).

Сегодня любой средний и крупный бизнес хранит множество данных в разрозненных источниках (CRM, ERP, HRM, базы данных, файловые хранилища и т.д.). Каждая из этих систем самодостаточна и закрывает определённую боль бизнеса, но собрав данные из таких источников и стандартизировав их, нам открывается возможность анализировать данные, строить модели машинного обучения и принимать на основе этих данных управленческие решения. Для того чтобы реализовать такой подход строятся ELT (или ETL) процессы. ELT (Extract, Load, Transform) — это процесс, состоящий из трех этапов:

Читать далее

Data-driven в одном iGaming проекте: когда культура работы с данными не приживается

Уровень сложностиПростой
Время на прочтение6 мин
Количество просмотров614

Казалось бы, преимущества найма специалистов по данным сегодня очевидны — нанимай и принимай качественно лучшие решения. Однако на практике многие компании сталкиваются с трудностями. Предлагаю разобраться

Читать далее

Бизнес в эпоху LLM: успешные кейсы и дальнейшие перспективы

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров5.1K

Вокруг LLM идёт большой ажиотаж, но помимо шумихи и обещаний, языковые модели в последнее время действительно находят свою нишу, где их можно эффективно применять. В статье я бы хотел поделиться опытом реализации подобных проектов и перспектив, которые мы выделяем как перспективные, некоторыми инсайтами по их применению. Те, кому может быть интересен подобный опыт и для кого языковые модели ещё не превратились в рутину, добро пожаловать под кат :-)

Читать далее

Сравниваем быстродействие новой функциональности ClickHouse по поиску ближайших векторов с другими решениями

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров5.3K

Всем привет! Меня зовут Диана Бутько, я студентка 3 курса, изучаю информационные системы и программирование. В InfoWatch я пришла на практику, и одной из моих задач стал сравнительный анализ различных методов поиска похожих векторов. Это один из ключевых аспектов машинного обучения и анализа данных, используемых в рекомендательных системах, кластеризации, семантическом поиске и других областях. Но чем больше объем данных, тем важнее становится выбор инструментов: полный перебор векторов требует больших вычислительных ресурсов, а в других алгоритмах порой необходимо балансировать между точностью и скоростью поиска.

В этой статье я сравниваю пять методов поиска похожих векторов:
— полный перебор по евклидову расстоянию с реализацией в Python;
— FAISS с индексами IndexFlatL2 (полный перебор, евклидово расстояние) и IndexIVFFlat (сегментирование по ячейкам, евклидово расстояние);
— векторный поиск в ClickHouse с индексом HNSW и метриками расстояния L2Distance (евклидово расстояние) и cosineDistance (косинусное сходство).

Читать далее

Что покажет бенчмарк? Оценка мультиагентных систем в действии

Время на прочтение6 мин
Количество просмотров557

Изучим бенчмарк для мультиагентных систем, его методологии и применение в оценке производительности агентов в сложных средах.

Читать далее

Вклад авторов