Основы теории вычислительных систем: машина с конечным числом состояний

Автор оригинала: Mark W. Shead
  • Перевод
Теория вычислительных систем — это то, что позволяет нам программировать. Однако, можно писать программы и без представления о концепциях, скрывающихся за вычислительными процессами. Не то, чтобы это было плохо — когда мы программируем, то работаем на намного более высоком уровне абстракции. В конце концов, когда мы ведём машину, то концентрируемся только на двух или трёх педалях, переключателе передач и руле. Для повседневной неспешной езды этого более чем достаточно. Однако, если мы хотим управлять автомобилем на пределе его возможностей, то тут нужно знать гораздо больше, чем просто три педали, КПП и руль.

Такой подход справедлив и в программировании. Большая часть повседневной мирской работы может быть выполнена при минимальном знании теории вычислительных систем или даже вообще без него. Не нужно понимать теорию категорий, чтобы накидать форму «Контакты» в PHP. Тем не менее, если вы планируете писать код, требующий серьёзных вычислений, то тут уж придётся разобраться с тем, что у этих самых вычислений под капотом.

Цель этой статьи — представить некоторые фундаментальные основы вычислений. Если это окажется интересным, то в дальнейшем я могу написать более продвинутый топик на эту тему, но прямо сейчас я хочу просто рассмотреть логику простейшего абстрактного вычислительного устройства — машины с конечным числом состояний (finite state machine).

Машина с конечным числом состояний


Машина с конечным числом состояний (finite state machine, FSM), или конечный автомат (finite automaton) — это математическая абстракция, используемая при проектировании алгоритмов. Говоря простым языком, машина с конечным числом состояний умеет считывать последовательности входных данных. Когда она считывает входной сигнал, то переключается в новое состояние. Куда именно переключится, получив данный сигнал, — заложено в её текущем состоянии. Звучит запутанно, но на самом деле всё очень просто.

Представим устройство, которое читает длинную бумажную ленту. На каждом дюйме этой ленты напечатана буква — a или b.



Как только устройство считывает букву, оно меняет своё состояние. Вот очень простой граф переходов для такой машины:



Кружки — это состояния, в которых машина может быть. Стрелочки — переходы между ними. Так что, если вы находитесь в состоянии s и считываете a, то вам необходимо перейти в состояние q. А если b, то просто остаётесь на месте.

Итак, если изначально мы находимся в состоянии s и начинаем читать ленту из первого рисунка слева направо, то сначала будет прочитана a, и мы переместимся в состояние q, затем b — вернёмся обратно в s. Следующая b оставит нас на месте, а a вновь переместит в q. Элементарно, но какой в этом смысл?

Оказывается, если пропустить ленту с буквами через FSM, то по её итоговому состоянию можно сделать некоторые выводы о последовательности букв. Для приведённго выше простого конечного автомата финальное состояние s означает, что лента закончилась буквой b. Если же мы закончили в состоянии q, то последней на ленте была буква a.

Это может показаться бессмысленным, но существует масса задач, которые можно решить с помощью такого подхода. Простейший пример: определить, содержит ли HTML-страница следующие теги в заданном порядке:

<html>
    <head>
    </head>
    <body>
    </body>
</html>


Машина с конечным числом состояний может перейти в новой состояние, считав , потом зациклиться до считывания , зациклиться до считывания и т.д. Если она успешно придёт к финальному состоянию, то заданные тэги стоят в правильном порядке.

Также конечный автомат может использоваться для представления механизмов парковочного счётчика, автомата с газировкой, автоматизированного газового насоса и тому подобных штук.

Детерминированная машина с конечным числом состояний (Deterministic Finite State Machine)


Машины с конечным числом состояний, которые мы рассматривали выше, являются детерминированными. У них из любого состояния существует только один переход для любого разрешённого входного сигнала. Другими словами, не существует двух различных путей из данного состояния, когда вы считываете, допустим, букву a. На первый взгляд такое ограничение кажется глупым.

Что хорошего в наборе решений, если один и тот же сигнал на входе может переместить вас более, чем в одно состояние? Вы же не можете сказать компьютеру: если x == true, то выполни doSomethingBig() или doSomethingSmall(), не так ли?

Ну, вообще-то, с помощью машины с конечным числом состояний можно провернуть что-то в этом роде. Выход конечного автомата - его финальное состояние. Сначала он проведёт все вычисления, затем прочтёт последнее состояние, и только тогда совершится какое-то действие. А в процессе переходов от состояния к состоянию не будет делаться ровным счётом ничего. FSM обрабатывает поступившие данные, и только дойдя до конца и считав конечное состояние, совершает ожидаемое от неё действие (например, наливает газировку). Этот принцип особенно важен, когда дело доходит до недетерминированных машин с конечным числом состояний.

Недетерминированная машина с конечным числом состояний (Nondeterministic Finite State Machine)


Недетерминированные машины с конечным числом состояний, или недетерминированные конечные автоматы (nondeterministic finite automaton, NFA) - это конечные автоматы, у которых входной сигнал для данного состояния может вести более чем в одно последующее состояние. Допустим, например, что мы хотим построить FSM, которая способна распознавать строки букв, начинающиеся с буквы a, за которой следует нуль или более букв b или нуль или более букв c. Условие останова - следующая буква алфавита на входе. Допустимыми строками будут:

  • abbbbbbbbbc
  • abbbc
  • acccd
  • acccccd
  • ac (нуль повторений b)
  • ad (нуль повторений c)


Итак, надо распознать букву a с последующим нулём или более одинаковых букв b или c и с замыкающей следующей буквой алфавита. Самый простой способ отобразить этот алгоритм с помощью машины с конечным числом состояний представлен ниже. Финальное состояние t означает, что строка была принята целиком и соответствует шаблону.



Видите проблему? Находясь в начальной точке s мы понятия не имеем, какой из путей выбрать. Если мы прочли только букву a, то мы ещё не знаем, идти нам в q или в r. Существует несколько способов решить эту задачу. Первый из них - откат. Вы просто перебираете все возможные пути и игнорируете или возвращаетесь назад по тем из них, где решение заходит в тупик.

На этом принципе основан алгоритм большинства шахматных программ. Они просматривают все возможности всех возможных ходов на данном этапе и выбирают ту стратегию, которая в данный момент даёт максимальное преимущество над противником.

Другой путь - это преобразовать недетерминированную машину с конечным числом состояний в детерминированную. Существование алгоритма преобразования любой недетерминированного автомата в детерминированный является одним из интереснейших атрибутов NFA. Однако, часто это весьма сложный процесс. К счастью для нас, пример выше достаточно прост. Фактически, всё преобразование можно провести в уме, не прибегая к помощи формального алгоритма.

Машина ниже - детерминированная версия недетерминированной машины на предыдущем рисунке. Здесь конечные состояния t или v достижимы для любой принятой машиной строки.



Недетерминированная модель имеет четыре состояния и шесть переходов. Детерминированная модель - шесть состояний, десять переходов и два возможных завершения. Разница невелика, однако мы знаем, что сложность имеет свойство расти по экспоненте. И адекватных размеров недетерминированная машина способна вырасти в просто огромную детерминированную.

Регулярные выражения


Если вы когда-нибудь занимались любым видом программирования, то вы почти наверняка сталкивались с регулярными выражениями (regular expressions). Регулярные выражения и машины с конечным числом состояний функционально эквивалентны. Всё, что можно допустить для (или связать с) регулярным выражением, можно допустить для (или связать с) конечным автоматом. Например, шаблон, который мы разбирали выше, можно связать с

a(b*c|c*d)

Регулярные выражения и машины с конечным числом состояний также имеют и одинаковые ограничения. Точнее, они могут принимать или связывать шаблоны, для обработки которых требуется конечный размер памяти. Так какие же типы шаблонов для них недопустимы? Предположим, что мы хотим найти только строки, состоящие из a и b, где за каким-то количеством букв a следует такое же число букв b. Другими словами, за n a следует n b, где n - какое-то число. Примером могут послужить строки:

  • ab
  • aabb
  • aaaaaabbbbbb
  • aaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbb


На первый взгляд это выглядит детской задачей для машины с конечным числом состояний. Проблема в том, что вы или быстро выйдете за пределы заданного числа состояний, или вам придётся допустить бесконечное их количество - и в этот момент ваше устройство перестаёт быть машиной с конечным числом состояний. Допустим, вы создаёте конечный автомат, который может принять двадцать a и следующие за ними двадцать b. Он будет прекрасно работать до те пор, пока на вход не придёт строка из двадцати одной a и двадцати одной b. И тогда вам придётся переписывать вашу машину для обработки более длинных строк. Для любой строки, которую вы можете распознать, всегда есть ещё одна, которая будет лишь немного длиннее, но которую ваша машина уже не способна обработать, не выходя за пределы памяти.

Это положение известно как лемма о накачке для регулярных языков. Её основная мысль: если ваш шаблон имеет блок, который может быть повторён более, чем один раз, то этот шаблон не является регулярным. Другими словами, ни регулярные выражения, ни машины с конечным числом состояний не могут быть сконструированы так, чтобы распознавать все строки, которые можно связать с шаблоном.

Если вы посмотрите внимательнее, то заметите, что тип шаблона, в котором каждая a связана с b, выглядит очень похоже на HTML, где внутри любой пары тэгов можно заключить произвольное количество других пар тэгов. Вот почему вы можете использовать регулярное выражение или машину с конечным числом состояний для распознавания, содержит ли HTML-страница конкретные html, head и body элементы в правильном порядке, но не можете использовать регулярное выражение, чтобы сказать, является ли HTML-страница целиком корректной или нет. HTML - не регулярный шаблон.

Машина Тьюринга


Так как же нам распознавать нерегулярные шаблоны? Существует теоретическое устройство, подобное конечному автомату и называемое машиной Тьюринга (Turing Machine). Как и у машины с конечным числом состояний, у него имеется бумажная лента, с которой оно считывает информацию. Однако, машина Тьюринга также способна записывать и стирать данные на ленте. Полное объяснение принципов этого устройства займёт больше места, чем у нас здесь имеется, поэтому я обозначу лишь несколько важных моментов, относящихся к нашей дискуссии о машинах с конечным числом состояний и регулярных выражениях.

Машина Тьюринга вычислительно полна, и всё, что в принципе может быть вычислено, может быть вычислено с помощью машины Тьюринга. А благодаря способности записывать данные на ленту с такой же лёгкостью, как и считывать их с ленты, она не ограничена конечным числом состояний. Бумажную ленту можно представить, как имеющую бесконечную длину. Очевидно, что современные компьютеры не обладают бесконечным количеством памяти, однако, они имеют её достаточно, чтобы вы не вышли за предел для тех типов задач, которые они способны обработать.

Машина Тьюринга предоставляет нам воображаемое механическое устройство, позволяющее визуализировать и понять, как работает вычислительный процесс. Это особенно полезно для понимания пределов вычислений. Если это интересно, то в будущем я могу написать отдельную статью о машине Тьюринга.

Почему это имеет значение?


Так какой во всём этом смысл? Как вышесказанное способно помочь вам при создании очередной PHP-формы? Несмотря на все их ограничения, машины с конечным числом состояний - одна из центральных концепций теории вычислений. В частности, тот факт, что из любого недетермированного конечного автомата, который вы можете спроектировать, возможно получить детерминированный конечный автомат, делающий то же самое. Это ключевой момент, потому что подразумевает, что вы можете спроектировать свой алгоритм, в котором каждый шаг будет наиболее очевидным. А уже имея надлежащий алгоритм, вы сможете легко конвертировать его в ту форму, в которой он будет наиболее эффективен.

Понимание, что машины с конечным числом состояний и регулярные выражения функционально эквивалентны, открывает невероятно интересные способы применения движков регэкспов. Особенно, когда дело доходит до создания бизнес-правил, которые могут быть изменены без перекомпиляции всей системы.

Знание основ теории вычислительных систем позволяет вам брать проблему X, которую вы понятия не имеете как решать, и применять к ней подход: "Я не знаю, как решить X, но я знаю, как решить Y и как привести решение для Y к решению для X. Вот почему теперь я знаю, как решить X".

Похожие публикации

AdBlock похитил этот баннер, но баннеры не зубы — отрастут

Подробнее
Реклама

Комментарии 11

    +8
    Тащемта, конечные автоматы по-русски это называется.
    • НЛО прилетело и опубликовало эту надпись здесь
      +4
      Непонятно для кого автор писал статью. Может я сужу предвзято, но для людей которые имеют базовые представления о КА статья будет очевидной (хотя примеры, на мой взгляд, не самые удачные). Для тех, кто первый раз в жизни сталкивается с такие понятием, статья будет не то что бы даже сложновата, а как-то… запутана и сумбурна, что ли.

      по поводу перевода
      Finite-state maching переводится на русский как «конечный автомат» (почти всегда), или, на крайний случай, «автомат с конечным числом состояний» (редко). Фраза «машина конечных состояний» вызывает ассоциацию «машина, оперирующая конечными состояниями», а должно быть «машина, имеющая конечное количество состояний».
        +1
        На тему применения конечных автоматов в обучении и может даже в реальной жизни: есть хороший инструмент, который позволяет при помощи конечных автоматов проверять параллельный алгоритм на дэдлоки и прочие неприятности — LTSA — Labelled Transition System Analyser.
          +2
          Машина конечных состояний (finite state machine, FST) fsm же
          • НЛО прилетело и опубликовало эту надпись здесь
              0
              Не смотря на то что я это когда учил в универе, всеравно было интересно почитать в этой легкой форме… освежить.
                +2
                Знание основ теории вычислительных систем позволяет вам брать проблему X, которую вы понятия не имеете как решать, и применять к ней подход: «Я не знаю, как решить X, но я знаю, как решить Y и как привести решение для Y к решению для X. Вот почему теперь я знаю, как решить X».
                Наверно индус, который писал этот код, тоже так думал:
                uint i;
                ...
                if (i.ToString().Length == 1)
                {
                  ...
                }
                
                  0
                  Всем большое спасибо за замечания по поводу перевода.
                    0
                    Почему от КА сразу перешли к машине Тьюринга, а не к автоматам со стеком (для обработки КС грамматик)?
                      0
                      К сожалению, не могу знать. Но вы можете зайти на сайт к автору оригинала и поинтересоваться у него.

                    Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

                    Самое читаемое