Сравнение Google TPUv2 и Nvidia V100 на ResNet-50

https://blog.riseml.com/comparing-google-tpuv2-against-nvidia-v100-on-resnet-50-c2bbb6a51e5e
  • Перевод


Недавно Google добавила к списку облачных услуг Tensor Processing Unit v2 (TPUv2) — процессор, специально разработанный для ускорения глубокого обучения. Это второе поколение первого в мире общедоступного ускорителя глубокого обучения, который претендует на альтернативу графическим процессорам Nvidia. Недавно мы рассказывали о первых впечатлениях. Многие просили провести более детальное сравнение с графическими процессорами Nvidia V100.

Объективно и осмысленно сравнить ускорители глубокого обучения — нетривиальная задача. Но из-за будущей важности этой категории продуктов и отсутствия подробных сравнений мы чувствовали необходимость провести самостоятельные тесты. Сюда входит и учёт мнений потенциально противоположных сторон. Вот почему мы связались с инженерами Google и Nvidia — и предложили им прокомментировать черновик этой статьи. Чтобы гарантировать отсутствие предвзятости, мы пригласили также независимых экспертов. Благодаря этому получилось, насколько нам известно, самое полное на сегодняшний день сравнение TPUv2 и V100.

Экспериментальная установка


Ниже сравниваются четыре TPUv2 (которые образуют один Cloud TPU) с четырьмя Nvidia V100. У обоих полная память 64 ГБ, поэтому на них можно обучать одинаковые модели с одинаковым объёмом обучающей выборки. В экспериментах мы обучаем модели одинаково: четыре TPUv2 в Cloud TPU и четыре V100 выполняют задачу синхронного параллельного распределённого обучения.

В качестве модели мы выбрали ResNet-50 на ImageNet, стандарт де-факто и ориентир для классификации изображений. Эталонные реализации ResNet-50 являются общедоступными, но ни одна из них не поддерживает обучение одновременно и на Cloud TPU, и на нескольких GPU.

Nvidia рекомендует для нескольких V100 использовать MXNet или реализации TensorFlow, доступные в виде образов Docker на облаке Nvidia GPU Cloud. К сожалению, выяснилось, что обе реализации не очень хорошо сходятся с настройками по умолчанию при работе на нескольких GPU с большими обучающими выборками. Необходимо вносить изменения, в частности, в скорость обучения (learning rate schedule).

Вместо этого, мы взяли реализацию ResNet-50 из репозитория бенчмарков TensorFlow и запустили её как образ Docker (tensorflow/tensorflow:1.7.0-gpu, CUDA 9.0, CuDNN 7.1.2). Она значительно быстрее, чем рекомендованная Nvidia реализация TensorFlow и лишь немного уступает (примерно на 3%, см. ниже) реализации MXNet. Зато хорошо сходится. К тому же появляется дополнительное преимущество, что мы сравниваем две реализации на одинаковой версии фреймворка (TensorFlow 1.7.0).

Google рекомендует использовать для Cloud TPU реализацию bfloat16 с TensorFlow 1.7.0 из официального репозитория TPU. В обеих реализациях — TPU и GPU — используются вычисления смешанной точности на соответствующей архитектуре, а большинство тензоров хранится в числах половинной точности.

Тесты V100 запускались на инстансе p3.8xlarge (16 ядер Xeon E5-2686@2.30GHz, 244 ГБ памяти, Ubuntu 16.04) на AWS с четырьмя V100 GPU (у каждого по 16 ГБ памяти). Тесты TPU запускались на маленьком инстансе n1-standard-4 (2 ядра Xeon@2.3GHz, 15 ГБ памяти, Debian 9), для которых выделен Cloud TPU (v2–8) из четырёх TPUv2 (у каждого по 16 ГБ памяти).

Мы провели два разных сравнения. Во-первых, изучили производительность с точки зрения пропускной способности (изображений в секунду) на синтетических данных без аугментации, то есть без создания дополнительных обучающих данных из имеющихся данных. Это сравнение не зависит от сходимости, здесь нет узких мест в I/O, а аугментация данных не влияет на результат. Во втором сравнении рассмотрели точность и сходимость двух реализаций на ImageNet.

Тест пропускной способности


Мы измерили пропускную способность по количеству изображений в секунду на синтетических данных, то есть с созданием данных для обучения на лету, при различных размерах выборки (batch size). Заметьте, что для TPU рекомендуется только размер выборки 1024, но по многочисленным просьбам читателей мы сообщаем и остальные результаты.


Производительность (изображений в секунду) на различных размерах выборки на синтетических данных и без аугментации. Размеры выборки «глобальные», то есть 1024 означает размер 256 на каждом из чипов GPU/TPU на каждом шаге

При размере обучающей выборки 1024 практически отсутствует разница в пропускной способности! TPU лишь немного впереди с разницей около 2%. На меньших размерах обучающей выборки происходит падение пропускной способности на обеих платформах, а графические процессоры работают чуть лучше. Но как упоминалось выше, такие размеры обучающей выборки в настоящее время не рекомендуются для TPU.

Следуя рекомендации Nvidia, мы провели эксперимент с GPU на MXNet. Использовалась реализация ResNet-50 в образе Docker (mxnet:18.03-py3), доступном в облаке Nvidia GPU Cloud. С размером обучающей выборки 768 (1024 слишком много) GPU обрабатывают около 3280 изображений в секунду. Это примерно на 3% быстрее, чем лучший результат для TPU. Но как упоминалось выше, реализация MXNet не очень хорошо сходится на нескольких GPU с таким размером обучающей выборки, поэтому здесь и ниже сосредоточимся на реализации TensorFlow.

Стоимость в облаке


Cloud TPU (четыре микросхемы TPUv2) в настоящее время доступен только в облаке Google. Он подключается по запросу к любому инстансу VM только когда требуются такие вычисления. Для V100 мы рассмотрели облачное решение от AWS (V100 ещё не доступны в облаке Google). Основываясь на результатах выше, мы можем нормализовать количество изображений в секунду за доллар для каждой платформы и провайдера.

Производительность: изображений в секунду на доллар
Cloud TPU 4 × V100 4 × V100
Облако Облако Google AWS Зарезервированный инстанс AWS
Цена за час $6,7 $12,2 $8,4
Изображений в секунду 3186 3128 3128
Производительность (изображений в секунду на доллар) 476 256 374

С такими ценами Cloud TPU выходит явным победителем. Тем не менее, ситуация может выглядеть по-другому, если вы рассматриваете аренду на более длительный срок или покупку оборудования (хотя в данный момент такой вариант недоступен для Cloud TPU). Таблица вверху также включает цену зарезервированного инстанса p3.8xlarge на AWS при аренде на 12 месяцев (без предоплаты). Это значительно повышает производительность в расчёте на один доллар до 374 изображений/с на $1.

Для GPU есть и другие интересные варианты. Например, Cirrascale предлагает ежемесячную аренду сервера с четырьмя V100 примерно за $7500 (около ~$10,3 в час). Но для прямого сравнения требуются дополнительные тесты, поскольку это оборудование отличается от оборудования на AWS (тип CPU, память, поддержка NVLink и т.д.).

Точность и сходимость


В дополнение к отчётам производительности мы хотели проверить, что вычисления на самом деле «осмысленны», то есть реализации сходятся к хорошим результатам. Поскольку сравнивались две разные реализации, можно ожидать некоторого отклонения. Поэтому наше сравнение — это не только показатель скорости оборудования, но и качества реализации. Например, реализация TPU предполагает очень ресурсоёмкие шаги предварительной обработки и фактически жертвует пропускной способностью. По информации Google, это ожидаемое поведение. Как увидим ниже, оно оправдано.

Мы обучили модели на наборе данных ImageNet, где задача состоит в том, чтобы классифицировать изображение в одну из 1000 категорий, таких как колибри, буррито или пицца. Набор данных состоит из 1,3 миллиона изображений для обучения (~142 ГБ) и 50 000 изображений для валидации (~7 ГБ).

Обучение идёт 90 эпох с размером выборки 1024, после чего результаты сравниваются с контрольными данными. Реализация TPU последовательно обрабатывает около 2796 изображений в секунду, а реализация GPU — около 2839 изображений в секунду. Это отличается от предыдущих результатов пропускной способности, где мы отключили аугментацию и использовали синтетические данные для сравнения чистой скорости TPU и GPU.


Точность топ-1 (т.е. для каждого изображения учитывается только предсказание с наибольшей уверенностью) двух реализаций после 90 эпох

Как показано выше, точность топ-1 после 90 эпох для реализации TPU на 0,7 п.п. лучше. Это может показаться незначительным, но добиться улучшения на этом очень высоком уровне чрезвычайно сложно. В зависимости от приложения такие небольшие улучшения могут значительно повлиять на результат.

Давайте посмотрим на точность топ-1 в разных эпохах во время обучения моделей.


Точность топ-1 на контрольном наборе для двух реализаций

Резкие изменения в приведённом выше графике совпадают с изменениями в скорости обучения. Тенденция сходимости лучше в реализации TPU. Здесь финальная точность достигается 76,4% после 86 эпох. Реализация GPU отстаёт и достигает финальной точности 75,7% после 84 эпох, тогда как для достижения такой точности на TPU требуются лишь 64 эпохи. Вероятно, улучшение конвергенции TPU связано с лучшей предварительной обработкой и аугментацией данных, но для подтверждения этой гипотезы необходимы дополнительные эксперименты.

Экономически выгодное решение на основе облачных цен


В конечном счёте имеют значение время и стоимость, необходимые для достижения определённой точности. Если взять решение на уровне 75,7% (лучшая точность, достигнутая реализацией GPU), то можно рассчитать стоимость достижения этой точности на основе требуемых эпох и скорости обучения в изображениях в секунду. Это исключает время для оценки модели в промежутках между эпохами и время на запуск обучения.


Цена для достижения точности топ-1 75,7%. *Зарезервирован на 12 месяцев

Как показано выше, текущая ценовая политика Cloud TPU позволяет обучить модель с нуля до точности 75,7% по ImageNet менее чем за 9 часов за $55! Обучение до сходимости 76,4% стоит $73. Хотя V100 работают так же быстро, но более высокая цена и более медленная сходимость приводят к значительно более высокой стоимости решения.

Опять же, обратите внимание, что сравнение зависит от качества реализации, а также от цены облака.

Интересно было бы сравнить разницу в энергопотреблении. Но в настоящее время нет общедоступной информации о потреблении энергии TPUv2.

Вывод


Что касается базовой производительности на ResNet-50, то четыре чипа TPUv2 (один модуль Cloud TPU) и четыре графических процессора V100 в наших тестах одинаково быстры (разница в пределах 2%). Вероятно, за счёт будущих оптимизаций ПО (например, TensorFlow или CUDA) производительность улучшится, а соотношение изменится.

Однако на практике чаще всего главное — это время и финансовые затраты, необходимые для достижения определённой точности на конкретной задаче. Текущее ценообразование Cloud TPU в сочетании с великолепной реализацией ResNet-50 приводят к впечатляющим результатам по времени и стоимости на ImageNet, что позволяет обучить модель до точности 76,4% примерно за 73 доллара.

Для детального сравнения нужны бенчмарки на моделях из других областей и с разными сетевыми архитектурами. Ещё интересно понять, сколько усилий требуется, чтобы эффективно использовать каждую аппаратную платформу. Например, вычисления со смешанной точностью сопровождаются существенным увеличением производительности, но по-разному реализуются на GPU и TPU.
  • +31
  • 10,6k
  • 4
Поделиться публикацией

Комментарии 4

    0
    >значительно снижает цену до 374 изображений/с на $

    Это число 374 не цена, а производительность, и она не снижается, а повышается. Ну т.е. тут слегка невнятно сформулировано и может вводить в заблуждение.
      +1

      Google вроде никогда и не заявляла, что TPU будут значительно быстрее на этапе обучения. А вот при инференсе прирост обещали в десятки раз. Было бы замечательно, если бы вы сделали такой бенчмарк на ResNet50.

        0
        Nvidia рекомендует для нескольких V100 использовать MXNet или реализации TensorFlow, доступные в виде образов Docker на облаке Nvidia GPU Cloud. К сожалению, выяснилось, что обе реализации не очень хорошо сходятся с настройками по умолчанию при работе на нескольких GPU с большими обучающими выборками. Необходимо вносить изменения, в частности, в скорость обучения (learning rate schedule).

        Вместо этого, мы взяли реализацию ResNet-50 из репозитория бенчмарков TensorFlow и запустили её как образ Docker (tensorflow/tensorflow:1.7.0-gpu, CUDA 9.0, CuDNN 7.1.2). Она значительно быстрее, чем рекомендованная Nvidia реализация TensorFlow и лишь немного уступает (примерно на 3%, см. ниже) реализации MXNet. Зато хорошо сходится. К тому же появляется дополнительное преимущество, что мы сравниваем две реализации на одинаковой версии фреймворка (TensorFlow 1.7.0).


        Тест плохой, тк сравнивать надо максимально возможную производительность. MXNet сильно быстрее чем TF. И то что им сложно менять lr — это нежелание дать равные условия в тесте, те они нечестные ребята.
          +1
          Однако на практике чаще всего главное — это время и финансовые затраты, необходимые для достижения определённой точности на конкретной задаче

          гугл существенно дешевле, ок. Но не стоит класть все яйца в одну корзину. По моему опыту — по другим сервисам гугла — он не стесняется задирать стоимость в разы, он не стесняется ронять качество сервисов и не восстанавливать его. Наконец, он не стесняется корреным образом перестраивать API доступа и ставить клиентов перед фактом необходимости глубоких переделок. Просто к сведению.

          Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

          Самое читаемое