Как стать автором
Обновить

Создание искусственного интеллекта

Искусственный интеллектМозг
Recovery mode
Пока программисты могут зарабатывать программированием, то существующие ИИ это не ИИ, какой бы фантик на них не был бы навешен. Предлагаемый мной вариант может решить этот вопрос.

В результате своих изысканий я перестал для себя использовать фразу «искусственный интеллект» как слишком неопределенную и пришел к другой формулировке: алгоритм самостоятельного обучения, исследования и применения найденных результатов для решения любых возможных к реализации задач.

Что такое ИИ, об этом уже много было написано. Я ставлю вопрос по другому, не «что такое ИИ», а «зачем нужен ИИ». Мне он нужен, что бы заработать много денег, затем что бы компьютер выполнял за меня все, что я сам не хочу делать, после построить космический корабль и улететь к звездам.

Вот и буду здесь описывать, как заставить компьютер выполнять наши желания. Если вы ожидаете здесь увидеть описание или упоминание, как работает сознание, что такое самосознание, что значит думать или рассуждать — то это не сюда. Думать — это не про компьютеры. Компьютеры рассчитывают, вычисляют и выполняют программы. Вот и подумаем, как сделать программу, способную рассчитать необходимую последовательность действий для реализации наших желаний.

В каком виде в компьютер попадет наша задача — через клавиатуру, через микрофон, или с датчиков вживленных в мозг — это не важно, это дело вторичное. Если мы сможем компьютер заставить выполнять желания написанные текстом, то после мы можем поставить ему задачу, что бы он сделал программу, которая так же выполняет желания, но через микрофон. Анализ изображений так же лишний.

Утверждать, что для того, что бы создаваемый ИИ мог распознавать изображения и звук, в него изначально должны быть включены такие алгоритмы, это все равно что утверждать, что всякий человек, который таковые создал, от рождения знали как работают такие программы.

Сформулируем аксиомы:
1. Все в мире можно посчитать по каким-нибудь правилам. (про погрешности позже)
2. Расчет по правилу, это однозначная зависимость результата от исходных данных.
3. Любые однозначные зависимости можно находить статистически.
А теперь утверждения:
4. Существует функция преобразования текстовых описаний в правила — что бы не нужно было искать уже давно найденные знания.
5. Существует функция преобразования задач в решения (это исполнялка наших желаний).
6. Правило прогнозирования произвольных данных включает в себя все остальные правила и функции.

Переведем это на язык программиста:
1. Все в мире можно посчитать по каким-нибудь алгоритмам.
2. Алгоритм всегда при повторении исходных данных дает одинаковый результат.
3. При наличии множества примеров исходных данных и к ним результатов, при бесконечном времени поиска можно найти все множество возможных алгоритмов, реализующих эту зависимость исходных данных и результата.
4. Существует алгоритмы конвертации текстовых описаний в алгоритмы (или любых других информационных данных) — чтобы не искать потребные алгоритмы статистически, если их уже кто-то когда-то нашел и описал.
5. Можно создать программу, которая будет исполнять наши желания, будь они в текстовом или голосовом виде, при условии, что эти желания реализуемы физически и в потребные рамки времени.
6. Если умудриться создать программу, которая умеет прогнозировать и учиться прогнозированию по мере поступления новых данных, то по истечении бесконечного времени такая программа будет включать все возможные в нашем мире алгоритмы. Ну а при не бесконечном времени для практической пользы и с некоторой погрешностью ее можно заставить выполнять алгоритмы программы п.5 или любые другие.

И еще, ИМХО:
7. Другого способа полностью самостоятельного и независимого от человека обучения, кроме как поиска перебором правил и статистической проверки их на прогнозировании, не существует. И нужно только научиться использовать это свойство. Это свойство является частью работы мозга.

Что нужно прогнозировать. В человеческий мозг от рождения начинает поступать поток информации — от глаз, ушей, тактильные и пр. И все решения принимаются им на основании ранее поступивших данных. По аналогии, делаем программу, у которой есть вход новой информации по одному байту — входной побайтовый поток. Все что поступило ранее, представляется в виде одного сплошного списка. От 0 до 255 будет поступать внешняя информация, и свыше 255 будем использовать как специальные управляющие маркеры. Т.е. вход позволяет записать скажем до 0xFFFF размерность числа. И именно этот поток, а точнее очередное добавляемое число информации и нужно научиться прогнозировать, на основании поступавших до этого данных. Т.е. программа должна пытаться угадать, какое будет добавлено следующее число.

Конечно возможны и другие варианты представления данных, но для целей, когда на вход поступают самые различные форматы, попросту туда по началу запихиваем различные html с описаниями, этот наиболее оптимальный. Хотя маркеры можно заменить на эскейп последовательности в целях оптимизации, но объяснять с ними менее удобно. (А так же, представим, что все в ASCII, а не UTF).

Итак, сначала как и при рождении, пихаем туда все подряд интернет-страницы с описаниями и разделяем их маркером нового текста — <NewPage> — что бы этот черный ящик учился всему подряд. Маркеры я буду обозначать тегами, но подразумевается, что они просто какое-то уникальное число. По прошествии некоторого объема данных, начинаем манипулировать входящей информацией с помощью управляющих маркеров.

Под прогнозированием я понимаю такой алгоритм, который знает не только какие закономерности уже были, но и ищет постоянно новые. И потому если на вход такой программе послать последовательность
<BEG>небо<ANS>синие<END>
<BEG>трава<ANS>зеленная<END>
<BEG>потолок<ANS>…
, то он должен сообразить, что за маркером <ANS> следует цвет от указанного ранее объекта, и на месте многоточия спрогнозирует наиболее вероятный цвет потолка.

Мы ему несколько примеров повторили, что бы он понял которую функцию нужно применить в пределах этих тегов. А сам цвет, он конечно же не выдумать должен, а должен его уже знать самостоятельно изучив вычисляя закономерности на прогнозировании.

Когда от алгоритма требуется ответ, то на вход последующих шагов подается то, что было прогнозом предыдущего шага. Типа автопрогнозирование (по аналогии со словом автокорреляция). И при этом отключаем функцию поиска новых последовательностей.

Другой пример, можно после первого маркера указывать вопрос, а во втором ответ, и тогда будь этот алгоритм супер-мега-крутым, он должен начать давать ответы даже на самые сложные вопросы. Опять же, в пределах уже изученных фактов.

Можно много придумать разных трюков с управляющими маркерами, поданными на вход прогнозирующего механизма, и получать любые желаемые функции. Если вам будет скучно читать про алгоритмическое обоснование этого свойства, то можно пролистать до следующих примеров с управляющими маркерами.

Из чего состоит этот черный ящик. Во первых стоит упомянуть, что стопроцентного прогнозирования всегда и во всех ситуациях сделать не возможно. С другой стороны, если как результат всегда выдавать число ноль, то это то же будет прогнозом. Хоть и с абсолютно стопроцентной погрешностью. А теперь посчитаем, с какой вероятностью, за каким числом, какое дальше следует число. Для каждого числа определится наиболее вероятное следующее. Т.е. мы его сможем немножко спрогнозировать. Это первый шаг очень длинного пути.

Однозначное отображение исходных данных на результат по алгоритму, это соответствует математическому определению слова функция, за исключением того, что к определению алгоритма не налагается определенность в количестве и размещении входных и выходных данных. Так же пример, пусть будет маленькая табличка: объект-цвет, в нее занесем множество строк: небо-синее, трава-зеленная, потолок-белый. Это получилась маленькая локальная функция однозначного отображения. И не важно, что в действительности не редко цвета не такие — там будут другие свои таблицы. И любая база данных, содержащая запомненные свойства чего-либо, является множеством функций, и отображает идентификаторы объектов на их свойства.

Для упрощения, дальше во многих ситуациях, вместо термина алгоритм, я буду употреблять термин функция, типа однопараметрическая, если другого не указано. И всякие такие упоминания, нужно в голове подразумевать расширяемость до алгоритмов.

И описание буду давать примерное, т.к. в реальности реализовать все это я пока… Но оно все логично. А так же следует учитывать, что все расчеты ведутся коэффициентами, а не истина или ложь. (возможно даже если явно указано что истина и ложь).

Любой алгоритм, в особенности который оперирует целыми числами, может быть разложен на множество условий и переходов между ними. Операции сложения, умножения, и пр. так же раскладываются на подалгоритмики из условий и переходов. И еще оператор результата. Это не оператор возврата. Оператор условия берет откуда-то значение и сравнивает его с константным. А оператор результата складывает куда-нибудь константное значение. Расположение взятия или складывания вычисляется относительно либо базовой точки, либо относительно прежних шагов алгоритма.

struct t_node {
	int type; // 0 - условие, 1 - результат
	union {
		struct { // оператор условия
			t_node* source_get;
			t_value* compare_value;
			t_node* next_if_then;
			t_node* next_if_else;
		};
		struct { // оператор результата
			t_node* dest_set;
			t_value* result_value;
		};
	}
};

На вскидку, что то вроде этого. И из таких элементов и строится алгоритм. В результате всех рассуждений получится более сложная структура, а эта для начального представления.

Каждая прогнозируемая точка рассчитывается по какой-то функции. К функции прилагается условие, которое тестирует на применимость этой функции к этой точке. Общая сцепка возвращает, либо ложь — не применимость, либо результат расчета функции. А непрерывное прогнозирование потока, это поочередная проверка применимости всех уже придуманных функции и их расчет, если истина. И так для каждой точки.

Кроме условия на применимость, есть еще дистанции. Между исходными данными, и результатными, и эта дистанция бывает различной, при одной и той же функции, применяемой в зависимости от условия. (И от условия до исходной или прогнозируемой то же есть дистанция, ее будем подразумевать, но опускать при объяснениях. И дистанции бывают динамическими).

При накоплении большого числа функций, будет возрастать количество условий, тестирующих применимость этих функций. Но, эти условия во многих случаях возможно располагать в виде деревьев, и отсечение множеств функций будет происходить пропорционально логарифмической зависимости.

Когда идет начальное создание и замер функции, то вместо оператора результата, идет накопление распределения фактических результатов. После накопления статистики, распределение заменяем на наиболее вероятный результат, и функцию предваряем условием, так же протестировав условие на максимальность вероятности результата.

Это идет поиск одиночных фактов корреляции. Накопив кучу таких одиночных, пытаемся объединить их в группы. Смотрим, из которых можно выделить общее условие и общую дистанцию от исходного значения к результату. А так же, проверяем, что при таких условиях и дистанциях, в других случаях, где идет повторение исходного значения, не идет широкое распределение результатного. Т.е. в известных частых употреблениях, оно высокотождественно.

Коэффициент тождественности. (Здесь двунаправленная тождественность. Но чаще она однонаправленная. Позже переобдумаю формулу.)
Количество каждой пары XY в квадрат и суммируем.
Делим на: сумма количеств в квадрате каждого значения X плюс сумма количеств в квадрате Y минус делимое.
Т.е. SUM(XY^2) / (SUM(X^2) + SUM(Y^2) — SUM(XY^2)).
Этот коэффициент от 0 до 1.

И в результате, что происходит. Мы на высокочастотных фактах убедились, что при этих условии и дистанции, эти факты однозначны. А остальные редковстречаемые — но суммарно таких будет гораздо больше чем частых — имеют ту же погрешность, что и частовстреченные факты в этих условиях. Т.е. мы можем накапливать базу прогнозирования на единично встречаемых фактах в этих условиях.

Да будет база знаний. Небо часто синее, а тропическая-редкая-фигня где-то увидели что она серо-буро-малиновая. И запомнили, т.к. правило мы проверили — оно надежное. И принцип не зависит от языка, будь то китайский или инопланетный. А позже, после понимания правил переводов, можно будет сообразить, что одна функция может собираться из разных языков. При этом нужно учесть, что базу знаний так же можно представить в виде алгоритмов — если исходное значение такое-то, то результатное такое-то.

Дальше, мы в следствии перебора других правил, находим, что при других расположении и условии, возникает уже виденная тождественность. Причем теперь нам не обязательно набирать большую базу для подтверждения тождественности, достаточно набрать десяток единичных фактов, и увидеть, что в пределах этого десятка, отображение происходит в те же значения, как и у прежней функции. Т.е. та же функция используется в других условиях. Это свойство образует то, что мы в описании разными выражениями можем описывать одно и то же свойство. А порой их просто перечислять в таблицах на интернет-страницах. И дальше, сбор фактов по этой функции можно производить уже по нескольким вариантам использования.

Происходит накопление возможных различных условий и расположений относительно функций, и на них так же можно пытаться находить закономерности. Не редко, правила выборки подобны для различных функций, отличаясь только каким-нибудь признаком (например слово идентифицирующее свойство или заголовок в таблице).

В общем понаходили мы кучку однопараметрических функций. А теперь, как при образовании из одиночных фактов в однопараметрические, так же и здесь, попытаемся сгруппировать однопараметрические по части условия и части дистанции. Та часть, что общая — новое условие, а та, что различается — это второй параметр новой функции — двухпараметрической, где первым параметром будет параметр однопараметрической.

Получается, что каждый новый параметр у многопараметрических находится с той же линейностью, что и образование из единичных фактов в однопараметрические (ну или почти с той же). Т.е. нахождение N-параметрической пропорционально N. Что в стремлении к очень много параметрам становится почти нейронной сеткой. (Кто захочет, тот поймет.)

Конвертационные функции.

Конечно замечательно, когда нам предоставили множество корреспондирующих примеров, скажем маленьких текстов перевода с русского на английский. И можно начинать пытаться находить между ними закономерности. Но в действительности, оно все перемешано во входном потоке информации.

Вот мы взяли нашли одну какую-то функцию, и путь между данными. Вторую и третью. Теперь смотрим, можем ли среди них, у каких-либо найти у путей общую часть. Попытаться найти структуры X-P1-(P2)-P3-Y. А потом, найти еще другие подобные структуры, с подобными X-P1 и P3-Y, но различающимися P2. И тогда мы можем заключить, что имеем дело со сложной структурой, между которыми существуют зависимости. А множество найденных правил, за вычетом серединной части, объединим в групп и назовем конвертационной функцией. Таким образом образуются функции перевода, компиляции, и прочие сложные сущности.

Вот возьмите лист с русским текстом, и с его переводом на незнакомый язык. Без самоучителя чрезвычайно сложно из этих листов найти понимание правил перевода. Но это возможно. И примерно так же, как это делали бы вы, это нужно оформить в поисковый алгоритм.

Когда разберусь с простыми функциями, тогда и буду дальше обмусоливать конвертационный поиск, пока сойдет и набросок, и понимание что это то же возможно.

Кроме статистического поиска функций, еще можно их формировать из описаний, посредством конвертационной функции в правила — читающая функция. Статистику для изначального создания читающей функции можно в избытке найти в интернете в учебниках — корреляции между описаниями и правилами примененными к примерам в тех описаниях. Т.е. получается, что алгоритм поиска должен одинаково видеть и исходные данные, и правила примененные к ним, т.е. все должно располагаться в неком однородном по типам доступов графе данных. Из такого же принципа только обратном, могут находиться правила для обратной конвертации внутренних правил во внешние описания или внешние программы. А так же формировать понимание системы, что она знает, а чего нет — можно перед затребованием ответа, поинтересоваться, а знает ли система ответ — да или нет.

Функции о которых я говорил, на самом деле не просто находимый единый кусок алгоритма, а могут состоять из последовательности других функций. Что в свою очередь не вызов процедуры, а последовательность преобразований, типа как в linux работа с pipe. Для примера, я грубо описывал прогнозирование сразу слов и фраз. Но что бы получить прогноз только символа, к этой фразе нужно применить функцию взятия этого одного символа. Или функция научилась понимать задачи на английском, а ТЗ на русском. Тогда РусскоеТЗ->ПеревестиНаАнглийский->ВыполнитьТЗнаАнглийском->Результат.

Функции могут быть не фиксированными в определении, и доопределяться или переопределяться по мере поступления дополнительной информации или при вообще изменении условий — функция перевода не конечная, и к тому же может меняться со временем.

Так же на оценку вероятностей влияет повторяемость одного множества в разных функциях — образует или подтверждает типы.

Так же нужно упомянуть, что не мало множеств реального мира, а не интернет-страниц, являются упорядоченными и возможно непрерывными, или с прочими характеристиками множеств, что как-то то же улучшает расчеты вероятностей.

Кроме непосредственного замера найденного правила на примерах, предполагаю существование других способов оценки, что то типа классификатора правил. А возможно и классификатора этих классификаторов.

Еще нюансы. Прогнозирование состоит из двух уровней. Уровень найденных правил и уровень поиска новых правил. Но поиск новых правил по сути то же программа со своими критериями. И допускаю (хотя пока не продумывал), что может быть все проще. Что нужен нулевой уровень, который будет искать возможные алгоритмы поиска во всем их многообразии, которые уже в свою очередь будут создавать конечные правила. А может быть это вообще многоуровневая рекурсия или фрактал.

Вернемся к управляющим маркерам. В результате всех этих рассуждений про алгоритм получается, что через них мы запрашиваем от этого черного ящика продолжить последовательность, и выдать расчет по функции определяемой по подобию. Типа сделать так, как было показано до этого.

Есть другой способ определения функции в этом механизме — выдать функцию через определение. Например:
<QUERY>Перевести на английский<PARAM>стол<RES>table<END>
<QUERY>Ответить на вопрос<PARAM>цвет неба<RES>синий<END>
<QUERY>Создать программу по ТЗ<PARAM>хочу искусственный интеллект<RES>...


Использование этой системы для решения наших задач состоит в следующем алгоритме. Делаем описание определения специального идентификатора для описания задач. Потом, создаем описание задачи и присваиваем ей новый идентификатор. Делаем описание допустимых действий. К примеру (хоть и не практично) непосредственно команды процессора — описания из интернета, а к компьютеру подключены манипуляторы, которыми через порты можно управлять. И после, мы у системы можем спрашивать, какое нужно выполнить следующее действие, для приближения задачи к решению, ссылаясь на задачу по идентификатору. А так же через раз спрашивать, не нужно ли какой дополнительно информации необходимой для дальнейшего расчета действий — информации по общим знаниям или по текущему состоянию решения задачи. И зацикливаем запросы действий и запросы информации в какой-нибудь внешний цикл. Вся эта схема строится на текстовых определениях, и потому может быть запущена посредством функций получаемых по определению. А выход — только лишь команды — отпадает вопрос многовероятности текстов. Вопрос масштабов необходимого прогнозирования сейчас не обсуждается — если будет необходимый и достаточный функционал прогнозирования — по логике оно должно работать.

Если кто в ИИ видит не способ решения задач, а какие-либо характеристики человека, то можно сказать, что человеческое поведение и качества так же являются расчетными и прогнозируемыми. И в литературе есть достаточно описаний того или иного свойства. И потому, если в системе мы опишем, которое из свойств хотим, то она в меру знаний будет его эмулировать. И будет воспроизводить либо абстрактное усредненное поведение, либо со ссылкой на конкретную личность. Ну или если хотите, можно попробовать запустить сверхразум — если дадите этому определение.

Прогнозировать можно что-то, что происходит по истечению какого-то времени. Объекты движутся со скоростями и ускорениями, и всякие другие возможные изменения чего-либо со временем. Прогнозировать можно и пространство. Для примера, вы заходите в незнакомую комнату, в которой стоит стол, у которого один из углов накрыт листом бумаги. Вы это угол не видите, но мыслено можете спрогнозировать, что он вероятней всего такой же прямоугольный, как и другие углы (а не закругленный), и цвет этого угла такой же как и у других углов. Конечно, прогнозирование пространства происходит с погрешностями — вдруг тот угол стола обгрызенный, и на нем пятно краски. Но и прогнозирование временных процессов тоже всегда с погрешностями. Ускорение свободного падения на земле не всегда 9.81, а зависит от высоты над уровнем моря, и от рядом стоящих гор. И измерительные приборы вы никогда не сможете сделать абсолютно точными. Т.е. прогнозирование пространства и процессов во времени всегда происходит с погрешностями, и у различных прогнозируемых сущностей различные погрешности. Но суть одинакова — алгоритмы, находимые статистически.

Получается, что прогнозирование нашего байтового потока, это вроде прогнозирование пространства информации. В нем кодируются и пространство и время. Вот встречается там какая-то структура — пусть будет кусок программы. Этот кусок программы — это прогнозируемое пространство, такое же как и стол. Набор правил прогнозирования этой структуры образуют правила этой структуры — что-то вроде регулярных выражений. Для определения структуры этих структур вычисляется прогнозирование не одиночного значения, а множества допустимых значений. На момент описания алгоритма, про отдельность роли структур в нем я еще не осознавал, и потому туда это не попало. Но добавив это свойство, образуется полное понимание картинки, и со временем попробую переписать. Учтите, что под структурами подразумеваются условно расширяемые — если такое-то свойство имеет такое-то значение, значит добавляется еще пачка свойств.

В целом, все что возможно в нашем мире, описывается типами, структурами, конвертациями и процессами. И все эти свойства подчиняются правилам, которые находятся в результате прогнозирования. Мозг делает тоже самое, только не точными методами, т.к. он аналоговое устройство.

Процессы научных исследований, отличаются от прочих тем, что до этого найденного знания не было описано в литературе. И что найденному знанию даются идентификаторы названий и описания. Это нам, людям нужны эти идентификаторы и описания — для обмена между собой, а компьютер нашел себе новую закономерность, и моча использует эту запись в базе его знаний. Если конечно не нужно поделиться с другими компьютерами.

Будет ли он искать исследования целенаправленно без постановки такой задачи? Нет, потому что у него нету собственных желаний, а только поставленные задачи. То, что у нас отвечает за реализацию собственных желаний и интересов, это у нас называется личность. Можно и у компьютера запрограммировать личность. И будет ли она подобна человеческой, или какой-то компьютерный аналог — но это все равно останется всего лишь поставленной задачей.

А наша творческая деятельность в искусстве, это те же исследования, только ищутся сущности, затрагивающие наши эмоции, чувства и разум.

Окончательной инструкции по изготовлению такой программы пока нету. Вопросов остается много, и про сам алгоритм, и про использование (и про многовариантность текстов). Со временем буду дальше уточнять и детализировать описание.

Альтернативным направлением реализации прогнозирования является использование рекуррентных нейронных сетей (скажем сеть Элмана). В этом направлении не нужно задумываться о природе прогнозирования, но там множество своих трудностей и нюансов. Но если это направление реализовать, то остальное использование остается прежним.

Выводы по статье:
1. Прогнозирование является способом находить все возможные алгоритмы.
2. С помощью манипуляции входом прогнозирования можно эти алгоритмы от туда вытаскивать.
3. Это свойство можно использовать, что бы разговаривать с компьютером.
4. Это свойство можно использовать, что бы решать любые задачи.
5. ИИ будет тем, как вы его определите, и после определения его можно решить как задачу.

Некоторые скажут, что брутфорсом найти какую-либо закономерность будет чрезмерно долго. В противовес этому могу сказать, что ребенок учится говорить несколько лет. Сколько вариантов мы сможем просчитать за несколько лет? Найденные и готовые правила применяются быстро, и для компьютеров гораздо быстрей чем у человека. А вот поиск новых и там и там долго, но будет ли компьютер дольше человека, этого мы не узнаем, пока не сделаем такой алгоритм. Так же, замечу, что брутфорс великолепно распараллеливается, и найдутся миллионы энтузиастов, которые включат свои домашние ПК для этой цели. И получиться, что эти несколько лет, еще можно поделить на миллион. А найденные правила другими компьютерами будут изучаться моментально, в отличие от аналогичного процесса у человека.

Другие начнут утверждать, что в мозге биллионы клеток нацеленных на распараллеливание. Тогда вопрос, каким образом задействуются эти биллионы при попытке без учебника на примерах изучить иностранный язык? Человек будет долго сидеть над распечатками и выписывать коррелирующие слова. В то же время, один компьютер это будет пачками делать за доли секунды.

И анализ изображений — двинте десяток бильярдных шаров и посчитайте сколько будет столкновений. (закрывшись от звука). А два десятка или три… И причем здесь биллионы клеток?

В общем, быстродействие мозга и его многопараллельность — это очень спорный вопрос.

Когда вы думаете о создании думающего компьютера, вы копируете в него то, чему человек научился в течении жизни, и не пытаетесь понять, а каковы механизмы, позволяющие это накопить от стартовой программы — пожрать и поспать. И эти механизмы основываются отнюдь не на аксиомах формальной логики. Но на математике и статистике.

PS: проголосуйте в голосовалке. Задумайтесь, перечитайте и проголосуйте. Не будьте воздержавшимися. Если нужны более детальные ответы — обращайтесь.

PPS: мое мнение, что научного определения термина «Искусственный интеллект» не существует. Существует только научно-фантастическое. А если нужна реальность, то см. п.5 в выводах по статье.

PPPS: Я много разных интерпретаций понял гораздо позже уже после написания статьи. Скажем, что поиск зависимости вопрос-ответ является аппроксимацией. Или каковы более точные научные определения вытаскивания нужной функции из многообразия найденных в процессе поиска функций прогнозирования. На каждый маленький момент понимания нельзя написать отдельную статью, а на все в общем нельзя, потому что не объединить в один заголовок. И все эти понимания, дают ответ, как получать от компьютерных вычислительных мощностей ответы на задаваемые вопросы, ответы на которые не всегда можно прочитать в существующих описаниях, как скажем для проекта Watson. Как создать программу, которая по одному упоминанию, или движению пальца, пытается понять и сделать то, что от нее хотят.

Когда нибудь такая программа будет сделана. И назовут ее очередным гаджетом. А не ИИ.

****
Исходники по этой теме, а так же дальнейшее развитие представления можете найти на сайте http://www.create-ai.org
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Каково ваше мнение?
5.15% Оно все слишком просто, и потому не заработает. 5
13.4% Оно не может быть так просто, иначе бы я сам такое давно придумал. 13
12.37% Я не понял, оно все сложно и скучно. 12
10.31% Я не понял, это все бред. 10
7.22% Там ошибка в логике. 7
21.65% Это не ИИ. 21
15.46% Это работать будет, если доделать. 15
14.43% Другое… 14
Проголосовали 97 пользователей. Воздержались 40 пользователей.
Теги:искусственный интеллектИИобработка текстов
Хабы: Искусственный интеллект Мозг
Всего голосов 23: ↑13 и ↓10+3
Просмотры71K

Похожие публикации

Лучшие публикации за сутки