Как стать автором
Обновить

Как работает мозг?

Время на прочтение 8 мин
Количество просмотров 118K
Алгоритмы *Обработка изображений *
Этот пост написан по мотивам лекции Джеймса Смита, профессора Висконсинского университета в Мадисоне, специализирующегося в микроэлектронике и архитектуре вычислительных машин.

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям. Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера. Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие. Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении. Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы — одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства. Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов


Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию. Строение мозга описано иерархически: кора состоит из долей, доли — из «гиперколонок», те — из «миниколонок»… Миниколонка состоит из примерно сотни отдельных нейронов.



По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор. Поэтому более плодотворный подход — попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства — попытаться предположить, как мог бы работать мозг целиком. Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, — и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.
Читать дальше →
Всего голосов 66: ↑64 и ↓2 +62
Комментарии 38

Архитектуру искусственного интеллекта нужно менять

Время на прочтение 7 мин
Количество просмотров 10K
Производство и разработка электроники *Искусственный интеллект
Перевод

Использовать архитектуру фон Неймана для приложений с искусственным интеллектом неэффективно. Что придёт ей на смену?


Использовать существующие архитектуры для решения задач машинного обучения (МО) и искусственного интеллекта (ИИ) стало непрактично. Энергия, потребляемая ИИ, значительно выросла, и CPU вместе с GPU всё больше кажутся неподходящими инструментами для этой работы.

Участники нескольких симпозиумов согласились с тем, что наилучшие возможности для значительных перемен возникают при отсутствии унаследованных особенностей, которые приходится тащить за собой. Большая часть систем со временем развивалась постепенно – и, пускай это обеспечивает безопасное продвижение вперёд, такая схема не даёт оптимальных решений. Когда появляется что-то новое, возникает возможность взглянуть на вещи свежим взглядом и выбрать лучшее направление, чем то, что предложат общепринятые технологии. Именно это обсуждали на недавней конференции, где изучался вопрос, является ли комплементарная структура металл-оксид-полупроводник (CMOS) наилучшей базовой технологией, на которой стоит строить ИИ-приложения.
Читать дальше →
Всего голосов 21: ↑18 и ↓3 +15
Комментарии 19

Шестерни войны: когда механические аналоговые компьютеры правили на море

Время на прочтение 15 мин
Количество просмотров 20K
Компьютерное железо История IT Научно-популярное Инженерные системы *
Перевод

Advanced Gun System (слева) создана как замена 16-дюймовых орудий линкоров (справа). Если не считать управляемых по GPS снарядов, цифровые технологи системы управления огнём AGS выполняют ту же задачу, что Rangekeeper Mark 8 линкора «Айова», только обладают меньшим весом и работают с ними меньше людей.

Новейший эскадренный миноносец типа «Замволт» (Zumwalt), в данный момент проходящий приёмо-сдаточные испытания, имеет на борту новый тип корабельной артиллерии: Advanced Gun System (AGS). Автоматизированная AGS способна выстреливать до 10 снарядов высокой точности с ракетным ускорением в минуту по целям на дальности в 100 миль.

Эти снаряды используют GPS и инерциальную систему наведения для повышения точности орудия до окружности возможной погрешности в 50 метров (164 футов). Это означает, что половина этих управляемых GPS снарядов упадёт в пределах этого расстояния до цели. Но если убрать навороченные снаряды с GPS, то AGS и её цифровая система управления огнём станут не более точными, чем механическая аналоговая технология, которой уже почти исполнился целый век.

Я имею в виду такие электромеханические аналоговые компьютеры управления огнём, как Ford Instruments Mark 1A Fire Control Computer и Mark 8 Rangekeeper. Эти машины могли непрерывно и в реальном времени выполнять расчёты с 20 и более переменными ещё задолго до того, как цифровые компьютеры проложили себе дорогу в море. Когда я служил на борту линкора «Айова» в конце 1980-х, они по-прежнему ещё использовались.
Всего голосов 37: ↑36 и ↓1 +35
Комментарии 16

Антикитерский механизм раскрывает свои новые секреты

Время на прочтение 17 мин
Количество просмотров 141K
История IT Научно-популярное Астрономия
Перевод

В 1900 году водолаз Элиас Стадиатис, облачённый в медно-латунный шлем и брезентовый костюм, появился из моря, трясясь от страха и бормоча о «куче мёртвых голых людей». Элиас был одним из греческих водолазов с острова Сими в восточной части Средиземного моря, собиравших морские губки. Они спрятались от жестокой бури рядом с крошечным островом Антикитерой, расположенным между Критом и материковой Грецией. Когда буря утихла, они продолжили нырять за губками и случайно наткнулись на обломки кораблекрушения со множеством древнегреческих сокровищ, которые и до сих пор остаются самыми крупными из найденных подводных останков древнего мира. «Мёртвые голые люди» оказались мраморными статуями, раскиданными по морскому дну вместе со множеством других артефактов. Вскоре после этого их открытие стало причиной первых крупных подводных археологических раскопок в истории.

Один из объектов, обнаруженный на месте раскопок, кусок размером с крупный словарь, изначально оставался незамеченным на фоне более удивительных находок. Однако несколько месяцев спустя Национальный археологический музей в Афинах вскрыл глыбу, скрывавшую внутри себя бронзовые точные шестерни размером с монету. Согласно историческим знаниям начала 20-го века, подобные шестерни не могли появиться в Древней Греции, да и ни в какой иной точке мира, ещё многие века после кораблекрушения. Находка породила ожесточённые споры.
Читать дальше →
Всего голосов 161: ↑159 и ↓2 +157
Комментарии 123

Перспективы использования квантовых компьютеров для расстановки элементов схем и трассировки соединений

Время на прочтение 11 мин
Количество просмотров 6.1K
Схемотехника *Квантовые технологии

Рассуждение в этой статье - по-прежнему офф-топ моей основной деятельности. Тем не менее, физика для меня гораздо ближе экономики, политики и истории, так что должно получиться лучше.

В рамках этой статьи будет рассмотрена разработка топологии интегральной схемы, что является итеративной задачей, а, значит, затраченное время будет меняться в зависимости от размера задачи.

Перспективы уменьшения временных затрат на такого плана задачи при помощи квантовых компьютеров и будут рассмотрены в рамках данной статьи. Относительно кратко и просто.

И ещё вопрос: имеет ли квантовый компьютер что-то общее с аналоговым компьютером?

Читать далее
Всего голосов 12: ↑8 и ↓4 +4
Комментарии 21