Как стать автором
Обновить

«Мне сложно понять мотивацию data scientist’а, который не видит красоты в математике» — Кирилл Данилюк, Data Scientist

Блог компании New Professions Lab Data Mining *Big Data *Машинное обучение *Интервью
Recovery mode
Привет, Хабр! Data Science уже давно стала привлекательной областью, и все больше и больше людей хотят сменить свою профессиональную траекторию и начать работать с большими данными. Своей историей перехода в data science, советами для начинающих и продвинутых data scientist’ов поделился Кирилл Данилюк, Data Scientist компании RnD Lab. Кроме этого, поговорили о необходимых качествах data scientist’а, о разметке данных, об отличии ML Engineer от data scientist, текущих проектах, крутых командах и людях, чья работа вдохновляет.



— Как ты пришел в data science? Чем тебя изначально привлекала область работы с данными?

— У меня довольно нетипичный бэкграунд: в дату я пришел из мира яндексового PM’ства (Project Management — прим. автора), когда меня позвали в ZeptoLab, пожалуй, лучшую российскую игровую компанию. Я сделал им прототип аналитической системы, дэшборды, фактически в первый раз начав писать код, который использовал кто-то другой. Код был ужасный, но это была реальная практика. Формально, конечно, я координировал работу двух аутсорсеров, но код они писали именно по этому прототипу. Я тогда еще не знал, что примерно это и есть data science, что я им и занимаюсь, пусть парт-тайм. Так что знакомство случилось довольно органически.

Уже тогда было видно, что идет целый сдвиг в парадигме разработки — вместо классического императивного программирования, когда ты жестко задаешь условия, наступает эра, когда машина сама с помощью данных сможет себя обучать. Видеть эту смену было невероятно круто, и очень хотелось попасть в число тех разработчиков новой эпохи.
Читать дальше →
Всего голосов 18: ↑14 и ↓4 +10
Просмотры 12K
Комментарии 1

Учиться нельзя откладывать

Блог компании New Professions Lab Python *Data Mining *Big Data *Карьера в IT-индустрии
Recovery mode
Хабр, привет! Скоро 1 сентября, и это навевает мысли об учебе. Если перефразировать известное выражение из советского мультфильма: «учиться нельзя откладывать», то актуальным все еще остается вопрос, куда же поставить запятую.

Мы решили дать возможность поделиться своими впечатлениями от программы “Специалист по большим данным” выпускникам весенней группы. Их истории разные: кто-то долго откладывал учёбу, но осознал, что уже пора; а для кого-то решение пойти на оффлайн программу, и переезд из другой страны с устоявшейся жизнью за 2 недели до старта программы, было осознанным шагом; для кого-то мнение друзей и коллег, уже прошедших программу, было решающим после некоторых раздумий; а кто-то бросился в учёбу с головой, осознавая, что не хватает начальных знаний, и успешно пробежал марафон в 12 недель; кто-то уже в 16 лет продал свой проект — система пропуска на мероприятие с распознаванием лиц — и решил дальше изучать большие данные. Итак, кто наши участники, зачем они шли на программу, чему научились, и как пережили 3 месяца программы.

image
Читать дальше →
Всего голосов 10: ↑5 и ↓5 0
Просмотры 3.3K
Комментарии 0

«Если хочешь создать нечто действительно крутое, надо копать глубже и знать, как твой код работает в системе, на железе»

Блог компании New Professions Lab Java *Data Mining *Big Data *
Хабр, привет! Интересно, как много программистов и разработчиков открыли для себя data science или data engineering, и строят успешную карьеру в области больших данных. Илья Маркин, Software engineer в Directual, — как раз один из разработчиков, перешедших в data engineering. Поговорили об опыте в роли тимлида, любимом инструменте в data engineering, Илья рассказал о конференциях и интересных профильных каналах джавистов, о Directual с пользовательской стороны и технической, о компьютерных играх и пр.

image

— Илья, спасибо, что нашел время встретиться. Поздравляю и с относительно недавним переходом в новую компанию, и с рождением дочки, хлопот и забот у тебя сейчас много. Сразу же первый вопрос: чем таким интересным тебе предложили заниматься в Directual, что ты ушел из DCA?

— Наверное, прежде надо рассказать, чем я в DCA занимался. В DCA (Data-Centric Alliance) я попал после прохождения программы «Специалист по большим данным». В тот момент я активно интересовался темой big data и понял, что это именно та область, в которой я хочу развиваться. Ведь там, где много данных, интересных инженерных проблем, которые необходимо решать, тоже предостаточно. Программа помогла мне довольно быстро погрузиться в экосистему мира биг дата, там я получил необходимые начальные знания о Hadoop, YARN, парадигме Map-Reduce, HBase, Spark, Flink, и многом другом, и о том, как это работает под высокой нагрузкой.
Читать дальше →
Всего голосов 12: ↑11 и ↓1 +10
Просмотры 7.4K
Комментарии 3

«Так я понял, что теперь я дата инженер, и по-другому можно себя спозиционировать на рынке»

Блог компании New Professions Lab Data Mining *Карьера в IT-индустрии Интервью Data Engineering *
Recovery mode
Хабр, привет! Еще одно интервью с нашим выпускником – Николай Рекубратский, тимлид команды разработчиков в компании XING. Николай рассказал о жизни в Германии, о ресурсе, на котором он нашел работу, чем европейские специалисты отличаются от российских в подходе к работе, о востребованности профессии data engineer в Европе, о проектах в XING и пр.

— Коля, какой у тебя бэкграунд и как складывался твой карьерный путь в data engineer и тимлида?

— Тимлидом я стал примерно год назад, но до сих пор стараюсь не упускать возможности немножко попрограммировать, когда доходят руки. До этого я долгое время был разработчиком и тем, кого сейчас называют дата инженером.

image

В своей прошлой конторе я занимался видеорекламой, строил аналитическую систему для наших клиентов. Это был стартап, который постепенно рос, пока не лопнул. Росли объемы бизнеса, и с ними – количество обрабатываемых данных, и в какой-то момент инструменты, которые я использовал и архитектуры, которые у нас применялись, перестали работать. В итоге я притащил новые инструменты, новые архитектуры, тогда была очень модной lambda-архитектура.

Потом был проект по составлению профилей для сотен миллионов пользователей, тоже довольно интересно. И во всех этих проектах мне нравился вызов: есть какие-то требования по отклику, по консистентности данных, еще по чему-то. Чтобы соответствовать этим ожиданиям и требованиям, нужно очень сильно переосмыслить текущую архитектуру. Это был и вызов, и свобода действий одновременно, именно это меня так и привлекало.
Читать дальше →
Всего голосов 20: ↑15 и ↓5 +10
Просмотры 8.6K
Комментарии 1